The codedescribe and codelisting Packages
Version 1.16

Alceu Frigeri*

October 2025

Abstract

This package is designed to be as class independent as possible, depending only
on expl3, scontents, listing, xpeekahead and pifont. Unlike other packages of the
kind, a minimal set of macros/commands/environments is defined: most/all defined
commands have an “object type” as a keyval parameter, allowing for an easy expansion
mechanism (instead of the usual “one set of macros/environments” for each object
type).

No assumption is made about page layout (besides “having a marginpar”), or un-
derlying macros, so that it can be used with any document class.

Contents
1 Introduction 1
1.1 Single versus Multi-column Classes 2
1.2 Current Version e e e 2
2 codelisting Package 2
2.1 In Memory Code Storage 2
2.2 Code Display/Demo 3
221 CodeKeys 4
3 codedescribe Package 5
3.1 Package Options e 5
3.2 Object Typekeys e 5
3.2.1 Format Keys 5
3.2.2 Format Groups e e 6
3.2.3 Object Types« o e 6
3.2.4 Customization e 6
3.3 Environments 7
3.4 Typeset Commands 8
3.5 Note/Remark Commands 9
3.6 Auxiliary Commands and Environment 9

1 Introduction

This package aims to document both Document level (i.e. final user) commands, as well
Package/Class level commands. It’s fully implemented using expl3 syntax and structures,
in special 13coffins, 13seq and 13keys. Besides those scontents and listing packages (see
[1] and [2]) are used to typeset code snippets. The package pifont is needed just to typeset
those (open)stars, in case one wants to mark a command as (restricted) expandable.

No other package/class is needed, any class can be used as the base one, which allows to
demonstrate the documented commands with any desired layout.

codelisting defines a few macros to display and demonstrate ITEX code (using Iistings
and scontents), whilst codedescribe defines a series of macros to display/enumerate macros
and environments (somewhat resembling the doc3 style).

*https://github.com/alceu-frigeri/codedescribe

codestore

1.1 Single versus Multi-column Classes

This package “can” be used with multi-column classes, given that the \linewidth and
\columnsep are defined appropriately. \linewidth shall defaults to text/column real width,
whilst \columnsep, if needed (2 or more columns) shall be greater than \marginparwidth plus
\marginparsep.

1.2 Current Version

This doc regards to codedescribe version 1.16 and codelisting version 1.16. Those two
packages are fairly stable, and given the (obj-type) mechanism (see 3.2) they can be easily
extended without changing their interface.

2 codelisting Package

It requires two packages: listings and scontents, defines an environment: codestore, a few
commands for listing/demo code: \tscode, \tsmergedcode, \tsdemo, \tsresult and \tsexec
and 2 auxiliary commands: \setcodekeys and \setnewcodekey.

2.1 In Memory Code Storage

Thanks to scontents (expl3 based) it’s possible to store KTEX code snippets in a expl3
sequence variable.

\begin{codestore} [(stcontents-keys)]
\end{codestore}

This environment is an alias to scontents environment (from scontents package, see [1]),
all scontents keys are valid, with two additional ones: st and store-at which are aliases
to the store-env key. If an “isolated” (st-name) is given (unknown key), it is assumed that
the environment body shall be stored in it (for use with \tscode, \tsmergedcode, \tsdemo,
\tsresult and \tsexec).

Note: From scontents, (st-name) is (index)ed (The code is stored in a se-
quence variable). It is possible to store as many code snippets as needed under
the same name. The first one will be (index)— 1, the second 2, and so on.
Warning: If explicitly using one of the store-env, st or store-at keys, the
storage name can be anything. BUT, due to changes (August 2025) in the latex
kernel keys processing, if an implicity key is used, then colons (:), besides a
comma and equal signs, aren’t allowed.

ETEX Code:

%The code will be stored as 'store:A'
\begin{codestore} [store-env = store:A]

\end{codestore}

%Same
\begin{codestore}[st = store:A]

\end{codestore}

%The code will be stored as 'storeA'
\begin{codestore} [storeA]

\end{codestore}
%This might raises an error.
%It will be stored as 'store' (not as 'store:A')

\begin{codestore} [store:A]

\end{codestore}

\tscodex*
\tsdemox*
\tsresult*

updated:
updated:

2024/01/06
2025/04/29

\tsmergedcodex*

new:

2025/04/29

\tsexec

new:

2025/04/29

2.2 Code Display/Demo

\tscode* [(code-keys)] {(st-name)} [(index)]
\tsdemo* [(code-keys)] {(st-name)} [(index)]
\tsresult* [(code-keys)] {(st-name)} [(index)]

\tscode* just typesets (st-name) (created with codestore) verbatim with syntax highlight
(from listings package [2]). The non-star version centers it and use just half of the base
line. The star version uses the full text width.

\tsdemox first typesets (st-name), as above, then executes it. The non-start version place
them side-by-side, whilst the star version places one following the other.

(new 2024/01/06) \tsresult* only executes it. The non-start version centers it and use just
half of the base line, whilst the star version uses the full text width.

Note: (from stcontents package) (index) can be from 1 up to the number of
stored codes under the same (st-name). Defaults to 1.

Note: All are executed in a local group which is discarded at the end. This
is to avoid unwanted side effects, but might disrupt code execution that, for
instance, depends on local variables being set. That for, see \tsexec below.

For Example:
KTEX Code:

\begin{codestore} [stmetal

Some \LaTeX{} coding, for example: \ldots.
\end{codestore}
This will just typesets \tsobj[keyl{stmeta}:
\tscode* [codeprefix={Sample Code:}] {stmetal}
and this will demonstrate it, side by side with source code:
\tsdemo [numbers=1eft,ruleht=0.5,

codeprefix={inner sample code},

resultprefix={inner sample result}] {stmeta}

ETEX Result:

This will just typesets stmeta:

Sample Code:
Some \LaTeX{} coding, for example: \ldots.

and this will demonstrate it, side by side with source code:

inner sample code inner sample result

Some \LaTeX{} coding, for example: \ldots. Some KTEX coding, for example:

\tsmergedcode* [(code-keys)] {(st-name-index list)}

This will typeset (as \tscode) the merged contents from (st-name-index list). The list
syntax comes from scontents (command \mergesc), where it is possible to refer to a single
index {(st-name A)} [(index)], a index range {(st-name B)} [(indexA-indexB)], or all indexes
from a (st-name), {(st-name C)} [(1-end)]. The special index (1-end) refers to all indexes
stored under a given (st-name).

Note: The brackets aren’t optional. For instance \tsmergedcode* [(code-keys)]
{ {(st-name A)} [(index)] , {(st-name B)} [(indexA-indexB)] , {(st-name
C)} [(1-end)] }

\tsexec {(st-name)} [(index)]

Unlike the previous commands which are all executed in a local group (discarded at the end)
this will execute the code stored at (st-name) [(index)] in the current IXTEX group.

\setcodekeys

\setnewcodekey

new: 2025-05-01

settexcs
texcs
texcsstyle

updated: 2025-05-01

setkeywd
keywd
keywdstyle

updated: 2025-05-01

setemph
emph
emphstyle

updated: 2025-05-01

letter
other

new: 2025-05-13

numbers
numberstyle

stringstyle
codestyle

bckgndcolor

codeprefix
resultprefix

2.2.1 Code Keys

\setcodekeys {(code-keys)}

One has the option to set (code-keys) per \tscode, \tsmergedcode, \tsdemo and \tsresult
call (see 2.2), or globally, better said, in the called context group .

N.B.: All \tscode and \tsdemo commands create a local group in which
the (code-keys) are defined, and discarded once said local group is closed.
\setcodekeys defines those keys in the current context/group.

\setnewcodekey {(new-key)} {(code-keys)?}

This will define a new key (new-key), which can be used with \tscode, \tsmergedcode, \tsdemo
and \tsresult. (code-keys) can be any of the following ones, including other (new-key)s. Be
careful not to create a definition loop.

settexcs, settexcs2, settexcs3 and settexcs4
texcs, texcs2, texcs3 and texcs4
texcsstyle, texcs2style, texcs3style and texcs4style

Those define sets of KTEX commands (csnames), the set variants initialize/redefine those
sets (an empty list, clears the set), while the others extend those sets. The style ones
redefines the command display style (an empty (value) resets the style to it’s default).

setkeywd, setkeywd2, setkeywd3 and setkeywd4
keywd, keywd2, keywd3 and keywd4
keywdstyle, keywd2style, keywd3style and keywd4style

Same for other keywords sets.

setemph, setemph2, setemph3 and setemph4
emph, emph2, emph3 and emph4
emphstyle, emph2style, emph3style and emph4style

for some extra emphasis sets.

letter and other

These allow to redefine what a letter or other are (they correspond to the alsoletter and
alsoother keys from listings). The default value for the letter includes (sans the comma)
@ : _ , whilst other default value is an empty list.

Note: You might want to consider setting letter to just letter={@,_} so you
don’t have to list all variants, but just the base name of an expl3 function.

numbers and numberstyle

numbers possible values are none (default) and left (to add tinny numbers to the left of the
listing). With numberstyle one can redefine the numbering style.

stringstyle and commentstyle

to redefine strings and comments formatting style.

bckgndcolor

to change the listing background’s color.

codeprefix and resultprefix

those set the codeprefix (default: BTEX Code:) and resultprefix (default: WTEX Result:)

parindent parindent

Sets the indentation to be used when ‘demonstrating’ KTEXcode (\tsdemo). Defaults to
whatever value \parindent was when the package was first loaded.

ruleht ruleht
When typesetting the ‘code demo’ (\tsdemo) a set of rules are drawn. The Default, 1, equals
to \arrayrulewidth (usually 0.4pt).

basicstyle basicstyle

new: 2023/11/18 Sets the base font style used when typesetting the ‘code demo’, default being \footnotesize
\ttfamily

3 codedescribe Package

This package aims at minimizing the number of commands, being the object kind (if a
macro, or environment, or variable, or key ...) a parameter, allowing for a simple extension
mechanism: other object types can be easily introduced without having to change, or add
commands.

3.1 Package Options

nolisting it will suppress the codelisting package load. In case it isn’t needed or another listing
package will be used.

base skip Changes the base skip, all skips (used by the environments at 3.3) are scaled up from this.
It defaults to the font size at load time.

strict Package Warnings will be reported as Package Errors.

color scheme Possible values: black, default, brighter and darker. This will adjust the initial color
configuration for the many format groups/objects (see 3.2.1). black will defaults all \tsobj
colors to black. default, brighter and darker are roughly the same color scheme. The
default scheme is the one used in this document. With brighter the colors are brighter
than the default, and with darker the colors will be darker, but not black.

Note: color scheme doesn’t affect codelisting / listings colors.

3.2 Object Type keys

(obj-types) defines the applied format, which is defined in terms of (format-groups) wich
defines a formatting function, font shape, bracketing, etc. to be applied.

3.2.1 Format Keys

Those are the primitive (format-keys) used when (re)defining (format-groups) and (obj-types)

(see 3.2.4):

meta to typeset between angles,

xmeta to typeset *verbatim™ between angles,

verb to typeset *verbatim*,

xverb to typeset *verbatim®, suppressing all spaces,

code to typeset *verbatim®, suppressing all spaces and replacing a TF by TF,
nofmt in case of a redefinition, to remove the ‘base’ formatting,

slshape to use a slanted font shape,

itshape to use an italic font shape,

noshape in case of a redefinition, to remove the ‘base’ shape,

lbracket defines the left bracket (when using \tsargs). Note: this key must have an

associated value,

rbracket defines the right bracket (when using \tsargs). Note: this key must have an
associated value,

color defines the text color. Note: this key must have an associated value (a color,
as understood by xcolor package).

3.2.2 Format Groups

Using \defgroupfmt (see 3.2.4) one can (re-)define custom (format-groups). The following
ones are predefined:

meta which sets meta and color
verb which sets color

oarg which sets meta and color
code which sets code and color
syntax which sets color

keyval which sets slshape and color
option which sets color

defaultval which sets color

env which sets slshape and color
pkg which sets slshape and color

Note: color was used in the list above just as a ‘reminder’ that a color is
defined /associated with the given group, it can be changed with \defgroupfmt.

3.2.3 Object Types

Object types are the (keys) used with \tsobj (and friends, see 3.4) defining the specific for-
matting to be used. With \defobjectfmt (see 3.2.4) one can (re-)define custom (obj-types).
The predefined ones are:

arg, meta based on meta

group
verb, xverb based on (group) verb plus verb or xverb
marg based on (group) meta plus brackets

oarg, parg, xarg based on (group) oarg plus brackets

code, macro, function based on code

()
()
()
()
(group)
syntax based on (group) syntax
keyval, key, keys, values based on (group) keyval
option based on (group) option
(group)
(group)
()

pkg, pack based on (group) pkg

defaultval based on defaultval

env based on env

3.2.4 Customization

To create user defined groups/objects or change the pre-defined ones:

\defgroupfmt \defgroupfmt {(format-group)} {(format-keys)}

new: 2023/05/16 (format-group) is the name of the new group (or one being redefined, which can be one of
the standard ones). (format-keys) is any combination of the keys from 3.2.1

For example, one can redefine the code group standard color with \defgroupfmt{code}{color=red}
and all obj-types based on it will be typeset in red (in the standard case: code, macro and
function objects).

\defobjectfmt

new:

2023/05/16

codedescribe

new: 2023/05/01

updated:
updated:
updated:

2023/05/01
2024/02/16
2025/09/25

NB: a note example

codesyntax

updated:

2025/09/25

\defobjectfmt {(obj-type)} {(format-group)} {(format-keys)}

(obj-type) is the name of the new (object) being defined (or redefined), (format-group) is the
base group to be used (see 3.2.2). (format-keys) (see 3.2.1) allow for further differentiation.

For instance, the many optional (xarg) are defined as follow:
\colorlet {c__codedesc_oarg_color} { gray!90!black }
\defgroupfmt {oarg} { meta , color=c__codedesc_oarg_color }
\defobjectfmt {oarg} {oarg} { lbracket={[} , rbracket={1} }

\defobjectfmt {parg} {oarg} { lbracket={(} , rbracket={)} }
\defobjectfmt {xarg} {oarg} { lbracket={<} , rbracket={>} }

3.3 Environments

\begin{codedescribe} [(obj-keys)] {(csv-1list)}

\end{codedescribe}

This is the main environment to describe Commands, Variables, Environments, etc. (csv-list)
items will be listed in the left margin. The optional (obj-keys) defaults to just code, it can
be any object type as defined at 3.2.3 (and 3.2.4), besides the following keys:

new To add a new line.

update To add an updated line.

note To add a NB line.

rulecolor For instance \begin{codedescribe} [rulecolor=white] will suppress the rules.

EXP A star % will be added to all items, signaling the commands are fully expand-
able.

rEXP A hollow star ¥¢ will be added to all items, signaling the commands are

restricted expandable.

Note: The keys new, update and note can be used multiple times. (2024/02/16)

Note: With the strict package option an error will be raised if used inside
another codedescribe environment. Otherwise a warning will be raised. (it’s
safe to do so, but it doesn’t make much sense).

\begin{codesyntax}

\end{codesyntax}

The codesyntax environment sets the fontsize and activates \obeylines, \obeyspaces, SO one
can list macros/cmds/keys use, one per line.

Note: codesyntax environment shall appear only once, inside of a codedescribe
environment. Take note, as well, this is not a verbatim environment!

Note: With the strict package option an error will be raised if used outside a
codedescribe environment, or more than once inside. Otherwise warnings will
be raised.

For example, the code for codedescribe (previous entry) is:
ETEX Code:

\begin{codedescribe} [env,new=2023/05/01,update=2023/05/01,note={a note examplel},update
=2024/02/16 ,update=2025/09/25] {codedescribe}
\begin{codesyntax}
\tsmacro{\begin{codedescribe}} [obj-typel{csv-1list}
\ldots
\tsmacro{\end{codedescribe}}{}
\end{codesyntax}
This is the main ...
\end{codedescribe}

describelist
describelist*

\describe

\typesetobj
\tsobj

updated: 2025/05/29

\typesetargs
\tsargs

\typesetmacro
\tsmacro

\typesetmeta
\tsmeta

\typesetverb
\tsverb

\begin{describelist} [(item-indent)] {(obj-type)}
\describe {(item-name)} {(item-description)}
\describe {(item-name)} {(item-description)}

\end{describelist}

This sets a description like ‘list’ In the non-star version the (items-name) will be typeset
on the marginpar. In the star version, (item-description) will be indented by (item-indent)
(defaults to: 20mm). (obj-type) defines the object-type format used to typeset (item-name).

\describe {(item-name)} {(item-description)}

This is the describelist companion macro. In case of the describe*, (item-name) will be
typeset in a box (item-ident) wide, so that (item-description) will be fully indented, oth-
erwise (item-name) will be typed in the marginpar.

Note: An error will be raised (undefined control sequence) if called outside of
a describelist or describelist* environment.

3.4 Typeset Commands

Note that, in the following commands, (obj-type) refers to any object type defined in 3.2.3
and 3.2.4.

\typesetobj [(obj-type)] {(csv-list)}

\tsobj [(obj-type)] {(csv-list)}

This is the main typesetting command, each term of (csv-list) will be separated by a
comma and formatted as defined by (obj-type) (defaults to code). (obj-type) can be any
object from 3.2.3 (or 3.2.4) and the following keys:

mid sep To change the item separator. Defaults to a comma, can be anything.
sep To change the separator between the last two items. Defaults to “and”.
comma To set the separator between the last two items to a comma.

bnf or To produce a bnf style or list, like [abc|xdh|htf|hrf].

meta or To produce a bnf style or list between angles, like (abc|xdh|htf|hrf).

par or To produce a bnf style or list between parentheses, like (abc|xdh|htf|hrf).

\typesetargs [(obj-type)] {(csv-list)}

\tsargs [(obj-type)] {(csv-list)}

These will typeset (csv-1list) as a list of parameters, like [(arg1)] [(arg2)] [(arg3)], or
{(argl)} {(arg2)} {(arg3)}, etc. (obj-type) defines the formating AND kind of brackets used
(see 3.2): [1 for optional arguments (oarg), {} for mandatory arguments (marg), and so on.

\typesetmacro {(macro-list)} [(oargs-list)] {(margs-list)}
\tsmacro {(macro-list)} [(ocargs-1list)] {(margs-list)}

These are just short-cuts for
\tsobj[code] {macro-list} \tsargs[oarg]{oargs-1list} \tsargs[marg]{margs-1list}.

\typesetmeta {(name)}
\tsmeta {(name)}

These will just typeset (name) between left /right ‘angles’ (no further formatting).

\typesetverb [(obj-type)] {(verbatim text)}
\tsverb [(obj-type)] {(verbatim text)}

Typesets (verbatim text) as is (verbatim...). (obj-type) defines the used format. The dif-
ference with \tsobj [verb]{something} is that (verbatim text) can contain commas (which,
otherwise, would be interpreted as a list separator in \tsobj.

Note: This is meant for short expressions, and not multi-line, complex code
(one is better of, then, using 2.2). (verbatim text) must be balanced ! other-
wise, some low level TEX errors may pop out.

3.5 Note/Remark Commands

\typesetmarginnote \typesetmarginnote {(note)}
\tsmarginnote

tsremark

\typesettitle
\tstitle

tsabstract

\typesetdate
\tsdate

new:

2023/05/16

\tsmarginnote {(note)’}

Typesets a small note at the margin.

\begin{tsremark} [(NB)]
\end{tsremark}

The environment body will be typeset as a text note. (NB) (defaults to Note:) is the note
begin (in boldface). For instance:

ETEX Code: ETEX Result:
Sample text. Sample test.
\begin{tsremark}[N.B.] Sample text. Sample test.
This is an example. ..
\end{tsremark} N.B. This is an example.

3.6 Auxiliary Commands and Environment

In case the Document Class being used redefines the \maketitle command and/or abstract
environment, alternatives are provided (based on the article class).

\typesettitle {(title-keys)}
\tstitle {(title-keys)}

This is based on the \maketitle from the article class. The (title-keys) are:

title The title.
author Author’s name. It’s possible to use the \footnote command in it.
date Title’s date.

Note: The \footnote (inside this) will use an uniquely assigned counter, start-
ing at one each time this is used (to avoid hyperref warnings).

\begin{tsabstract}

\end{tsabstract}

This is the abstract environment from the article class.

\typesetdate
\tsdate

This provides the current date (in Month Year, format).

References

[1] Pablo Gonzalez. SCONTENTS - Stores LaTeX Contents. 2024. URL: http://mirrors.
ctan.org/macros/latex/contrib/scontents/scontents.pdf (visited on 03/10/2025).

[2] Jobst Hoffmann. The Listings Package. 2024. URL: http://mirrors . ctan . org/
macros/latex/contrib/listings/listings.pdf (visited on 03/10/2025).

http://mirrors.ctan.org/macros/latex/contrib/scontents/scontents.pdf
http://mirrors.ctan.org/macros/latex/contrib/scontents/scontents.pdf
http://mirrors.ctan.org/macros/latex/contrib/listings/listings.pdf
http://mirrors.ctan.org/macros/latex/contrib/listings/listings.pdf

	Introduction
	Single versus Multi-column Classes
	Current Version

	codelisting Package
	In Memory Code Storage
	Code Display/Demo
	Code Keys

	codedescribe Package
	Package Options
	Object Type keys
	Format Keys
	Format Groups
	Object Types
	Customization

	Environments
	Typeset Commands
	Note/Remark Commands
	Auxiliary Commands and Environment

