The

Memoir
Class

The Memoir Class

for

Configurable Typesetting
User Guide

Peter Wilson

Maintained by Lars Madsen
Corresponding to memoir version v3.8.4, 2025/10/02

P
The Herries Press

- o

© 2001 —2010
©2011 —

All rights reserved

Peter R. Wilson
Lars Madsen

The Herries Press, Normandy Park, WA.

Printed in the World

The paper used in this publication may meet the minimum requirements of the American National Standard for
Information Sciences — Permanence of Paper for Printed Library Materials, ANSI Z39.48-1984.

10 09 08 07 06 05 04 03 02 01 191817161514 13
First edition: 3 June 2001
Second impression, with corrections: 2 July 2001
Second edition: 14 July 2001
Second impression, with corrections: 3 August 2001
Third impression, with minor additions: 31 August 2001
Third edition: 17 November 2001
Fourth edition: 16 March 2002
Fifth edition: 10 August 2002
Sixth edition: 31 January 2004
Seventh edition: 10 May 2008
Eighth impression, with very minor corrections: 12 July 2008
Ninth impression, with additions and corrections: 8 July 2009
Eighth edition: August 2009
Tenth impression, with additions and corrections: 11 November 2015

memoir, n. a written record set down as material for a history or biography:
a biographical sketch: a record of some study investigated by the writer: (in
pl.) the transactions of a society. [Fr. mémoire — L. memoria, memory — memotr,
mindful.]

Chambers Twentieth Century Dictionary, New Edition, 1972.

memoir, n. [Fr. mémoire, masc., a memorandum, memoir, fem., memory < L.
memoria, MEMORY] 1. a biography or biographical notice, usually written by
a relative or personal friend of the subject 2. [pl.] an autobiography, usually a
full or highly personal account 3. [pl.] a report or record of important events
based on the writer’s personal observation, special knowledge, etc. 4. a
report or record of a scholarly investigation, scientific study, etc. 5. [pl.] the
record of the proceedings of a learned society

Webster’s New World Dictionary, Second College Edition.

memoir, 7. a fiction designed to flatter the subject and to impress the reader.

With apologies to Ambrose Bierce

Short contents

Short contents -

Contents -

List of Figures -

List of Tables -

List of typeset examples -
Remarks from the maintainer -

Preface -

Introduction to the eighth edition

Remarks to the user -
Terminology -

1 Starting off -

2 Laying out the page -

3 Text and fonts -

4 Titles -

5 Abstracts -

6 Document divisions -

7 Pagination and headers -
8 Paragraphs and lists -

9 Contents lists -

vii

vii

ix

Xxvii

XX

Xxii

XXiii

XXVii

- XXIX

XXXVii

XXX1X

1

7

35

55

69

73

105

125

143

viii

10 Floats and captions -

11 Rows and columns -

12 Page notes -

13 Decorative text -

14 Poetry -

15 Boxes, verbatims and files -
16 Cross referencing -

17 Back matter -

18 Miscellaneous -

19 For package users -

20 An example book design

21 An example thesis design

A Packages and macros -
B Showcases -

C Sniplets -

D Pictures -

E LaTeX and TeX-

F The terrors of errors -
G Comments -

Notes -

Command summary -
Index -

Index of first lines -

173

211

237

257

263

279

301

305

327

355

- 359

- 367

389

393

411

419

439

457

481

483

485

527

573

SHORT CONTENTS

Contents

Short contents vii
Contents ix
List of Figures Xvii
List of Tables XX
List of typeset examples xxii
Remarks from the maintainer xxiii
Preface XXvii
Introduction to the eighth edition XXix
General considerations e XXiX
Classoptions XXX
Sectioning styles XXX
Captions e xxxi
Tables e xxxi
VOISe . . o o e e e e Xxxii
Endmatter e e Xxxiii
Miscellaneous e e e Xxxiii
Packages xxxiii
Resources e e XXX1V
Typeconventions XXXV
Acknowledgements XXXV
Remarks to the user XXXVii
Terminology XXXiX
Units of measurement e x1
1 Starting off 1
1.1 Stock papersizeoptions 1
1.2 Typesizeoptions 2

1.2.1 Extended font sizes 3

ix

CONTENTS

1.3 Printingoptions L o 4
14 Otheroptions 5
15 Remarks 5
Laying out the page 7
21 Imtroduction 7
22 Stockmaterial oo 7
23 Thepage 8
24 Thetypeblock 13
2.4.1 A note on the width of the typeblock 13, 2.4.2 Specifying the typeblock
size 16
2.5 Headers, footers and marginalnotes 20
26 Other 22
2.7 Puttingittogether L Lo 22
28 Sidemargins 26
29 Emitting the pagesize, 26
210 Example 27
2.10.1 The page layout of this manual 27
211 Predefined layouts o L. 29
212 Place trimmed pageon thestock 32
Text and fonts 35
31 Fonts 35
32 Fontsizes. e 44
33 Spaces. 49
3.3.1 Paragraphs 49, 3.3.2 Double spacing 50
34 Overfulllines 52
35 Sloppybottom 52
36 Textcase 54
Titles 55
41 Stylingthetitling o 61
42 Stylingthethanks o oL 66
Abstracts 69
51 Styling 69
52 Onecolumnabstracts 71
Document divisions 73
6.1 Logicaldivisions 73
6.2 Sectionaldivisions Lo oL 74
6.2.1 Appendices 76
6.3 Numbering 77
6.4 Bookandpartheadings 78

6.4.1 Leadpage 81
6.5 Chapterheadings 82

CONTENTS

10

6.6
6.7
6.8
6.9

6.5.1 Defining a chapter style 85, 6.5.2 Further chapterstyles 88, 6.5.3 Chapter
precis 90

Lowerlevelheadings
Fancy anonymousbreaks. o o oo L L
Footnotes in division headings
Predefined heading styles

Pagination and headers

7.1
7.2
7.3

7.4
7.5

Paginationand folios o o oL
Pagestyles
Making headers and footers L.
7.3.1 Example pagestyles 114, 7.3.2 Index headers 119, 7.3.3 Float pages 119

The showlocs pagestyle.
Other things to do with pagestyles

Paragraphs and lists

8.1

8.2
8.3
8.4

8.5
8.6

Paragraphs
8.1.1 Block paragraph 125, 8.1.2 Hanging paragraphs 126

Flushandragged
Quotations e
Some less common paragraph shapes
8.4.1 Last line not short 130, 8.4.2 Russian typography 130, 8.4.3 Fill with
rules 131, 8.4.4 Some ragged paragraphs 131, 8.4.5 Left spring right 132
Changing thetextwidth
Lists . . . o o o

Contents lists

9.1
9.2

9.3

94
9.5

General ToCmethods
The class ToCmethods
9.2.1 Changing the titles 149, 9.2.2 Typesetting the entries 151, 9.2.3 About
upper or lower casing TOC entries 162, 9.2.4 Example: No section num-
ber 163, 9.2.5 Example: Multicolumn entries 163, 9.2.6 Example: Multiple
contents 164

New ‘Listof...”and entries
9.3.1 Example: plates 171

Chapterprecis
Contents lists and bookmarks

Floats and captions

10.1

10.2
10.3
10.4
10.5
10.6
10.7

New floatenvironments
10.1.1 Margin floats 175

Settingoffafloat
Multiplefloats
Where LaTeX putsfloats
Captions e
Captionstyling
Continuation captionsandlegends

X1

92
98
100
101

105
105
106
108

122
123

125
125

127
128
129

133
135

143
143
148

xii

11

12

13

14

CONTENTS
10.8 Bilingualcaptions L L o 196
109 Subcaptions 199
1010 Sidecaptions 202
10.10.1 Tweaks 204
10.11 How LaTeXmakes captions 206
10.12 Footnotesincaptions 209
Rows and columns 211
111 General L 211
112 Thepreamble 212
11.2.1 D column specifiers 214, 11.2.2 Defining new column specifiers 216,
11.2.3 Surprises 217
11.3 Thearray environment 218
114 Tables o o o 220
11,5 Fear'srules. L 222
11.5.1 Fills 224
11.6 Tabularenvironments. 226
11.6.1 Examples 226
11.7 Spacesandrules L L 230
11.7.1 Spacing 230, 11.7.2 Special variations on horizontal lines 230,
11.7.3 Handling of rules 231
11.8 Freetabulars o 231
11.8.1 Continuous tabulars 232, 11.8.2 Automatic tabulars 233
Page notes 237
121 FPootnotes 237
12.1.1 A variety of footnotes 238, 12.1.2 Styling 240
122 Marginalnotes L L 244
123 Sidenotes 245
124 Sidebars 247
125 Sidefootnotes L 249
12.5.1 Bottom aligned side footnotes 249, 12.5.2 Setting the layout for
\sidefootnote250,12.5.3 Styling \sidefootnote250,12.5.4 Side foot-
note example 251
126 Endnotes 251
12.6.1 Changing the appearance 254
Decorative text 257
131 Epigraphs 257
132 General L 258
13.3 Epigraphs before chapter headings 259
13.3.1 Epigraphs on book or part pages 261
Poetry 263
141 Classy verse 265
14.1.1 Indented lines 269, 14.1.2 Numbering 270
142 Titles 271

CONTENTS

15

16

17

18

14.2.1 Main Poem Title layout parameters 272, 14.2.2 Detailed Poem Title lay-
out parameters 272

143 Examples
A Limerick 273, Love’s lost 274, Fleas 274, In the beginning 275, Mathemat-
ics 275, The Young Lady of Ryde 276, Clementine 277, Mouse’s Tale 278

Boxes, verbatims and files

151 BOXES o e e e e e e e e e e e e e e

152 Longcomments

15.3 Verbatims.
15.3.1 Boxed verbatims 287, 15.3.2 New verbatims 289, 15.3.3 Example: the
lLcode environment 290

154 Files e
15.4.1 Writing to a file 292, 15.4.2 Reading from a file 293, 15.4.3 Example:
endnotes 294, 15.4.4 Example: end floats 294, 15.4.5 Example: questions and
answers 297

155 ANSWErS o e e e e e e e e e e

Cross referencing
16.1 Labelsandreferences
16.2 Referencebyname

Back matter

171 Bibliography
17.1.1 BibTex 307, 17.1.2 BibLaTeX 308

172 Index e
17.2.1 Printing an index 309, 17.2.2 Preparing an index 310, 17.2.3 Makeln-
dex 312, 17.2.4 Controlling Makelndex output 316, 17.2.5 Indexing and the
natbib package 318

173 Glossaries
17.3.1 Controlling the glossary 320

Miscellaneous

In which we talk of many things, but not shoes or ships or sealing wax, nor cabbages
and kings.

18.1 Draftdocuments. L
182 Changemarks o
183 Trimmarks
184 Sheetnumbering o oL
18.5 Gatheringsorsignatures o Lo oL
186 Time. e
18.7 Pagebreaksbeforelists
18.8 Changingcounters
189 New new and providecommands
18.10 Changing macrosttt
18.11 Stringarguments o o
18.12 Odd/evenpagechecking

xiii

273

279
280
284
285

291

300

301
301
303

305
305

308

319

xiv CONTENTS
18.13 Moving toanotherpage 338
18.14 Number formatting 0L 339

18.14.1 Numeric numbers 339, 18.14.2 Named numbers 340, 18.14.3 Frac-

tions 342
18.15 Anarray datastructure oL Lo L o 343
18.16 Checkingtheprocessor 344

18.16.1 Checking for pdfLaTeX 344, 18.16.2 Checking for XeTeX 345,

18.16.3 Checking for LuaTeX 345
1817 Leading 345
18.18 Minor space adjustment L L L L L. 345
18.19 Addingaperiod 346
1820 Wordsand phrases 346
1821 Symbols 346
18.22 Twosimplemacros o 348
18.23 Vertical centering L L o 348
18.24 For packagewriters L L o 348

18.24.1 Emulating packages 348, 18.24.2 Inserting code before and after a file,

package or class 349
1825 Headinghooks o . 351
18.26 Documenting LaTeX commands. 352

19 For package users 355
19.1 Class/packagenameclash 355
19.2 Support for bididirectional typesetting o L. 356

20 An example book design 359
20.1 Introduction 359
20.2 Designrequirements Lo 359
20.3 Specifying the page and typeblock, 360
20.4 Specifying the sectional titling styles 362

20.4.1 The chapter style 362, 20.4.2 Lower level divisions 362
20.5 Specifying the pagestyle 363
20.6 CaptionsandtheToC 365
20.7 Preambleor package? o 365

21 An example thesis design 367

21.1 Example US thesis typographic requirements 367
21.1.1 General 367, 21.1.2 Preliminary matter 368, 21.1.3 Table of con-
tents 369, 21.1.4 Lists 370, 21.1.5 Main text 370, 21.1.6 Backmatter 371
212 Code 371
21.2.1 Initialisation 372, 21.2.2 Page layout 372, 21.2.3 Page styles 374,
21.2.4 The ToC and friends 375, 21.2.5 Chapter styling 376, 21.2.6 Section,
etc., styling 376, 21.2.7 Captions 377, 21.2.8 The bibliography 377, 21.2.9 End
notes 377, 21.2.10 Preliminary headings 378, 21.2.11 Components of the title
and approval pages 379, 21.2.12 The title and approval pages 379, 21.2.13 The
last bits 383
213 Usage o e 383

CONTENTS XV

214 Comments ot e e 385
A Packages and macros 389
Al Packages 389
A2 Macroso e e 390
B Showcases 393
B.1 Chapterstyles 393

B.1.1 Chappell 406, B.1.2 Demo, Demo2 and demo3 407, B.1.3 Pedersen 407,
B.1.4 Southall 408, B.1.5 Veelo 409

C Sniplets 411
Sniplet C.1 (Remove pagenumber if only onepage) 411
Sniplet C.2 (A kind of draftnote) 411
Sniplet C.3 (Adding indentation to footnotes) 412
Sniplet C.4 (Autoadjusted number widthsinthe ToC) 413
Sniplet C.5 (Using class tools to make a chapter ToC) 414
Sniplet C.6 (AnappendixToC) 417

D Pictures 419
D.1 Basicprinciples 419
D2 Pictureobjects L 421

D.2.1 Text 421, D.2.2 Boxes 422, D.2.3 Lines 427, D.2.4 Arrows 429,

D.2.5 Circles 429
D.3 Repetitions L 432
D4 Beziercurves. e 435

E LaTeX and TeX 439
E1l TheTeXprocess 440
E2 LaTeXfiles 441
E3 Syntax 442
E4 (La)TeXcommandsottt 443
E5 Calculation 446

E.5.1 Numbers 446, E.5.2 Lengths 447
E6 Programming 451

F The terrors of errors 457

F1 ~ TeXmessages 458
F.1.1 TeX capacity exceeded 466

F2 LaTeXerrors i 468

F3 LaTeXwarnings 472

F4 Classerrors. i 475

E5 Classwarnings 478

G Comments 481
G1 Algorithms 481

G.1.1 Autoadjusting \marginparwidth 481

XVvi CONTENTS

Notes 483
Chapter3Textand fonts 483
Chapter 12 Pagenotes e 484

Command summary 485

Index 527

Index of first lines 573

List of Figures

2.1
2.2
23
24
2.5
2.6
2.7
2.8
29
2.10
2.11
212
213

4.1
4.2
4.3
44
45

6.1

6.2
6.3

7.1

8.1
8.2

9.1
9.2

10.1

LaTeX page layout parameters forarectopage 9
The memoir class page layout parameters for a verso (left hand) page 10
The memoir class page layout parameters for a recto (right hand) page . . . 11
The recto page layout for thismanual 28
Default layout for letterpaper 30
Letterpaper layout: Left \medievalpage, Right \medievalpage[12] . . . 30
Letterpaper layout: Left \isopage, Right \isopage[12] 30
Letterpaper layout: Left \semiisopage, Right \semiisopage[12] 30
Default layout foradpaper oL 31
Adpaper layout: Left \medievalpage, Right \medievalpage[12] 31
Adpaper layout: Left \isopage, Right \isopage[12] 31
Adpaper layout: Left \semiisopage, Right \semiisopage[12] 31

Example of the nine \setpageXX macros for placing a trimmed page on
the stock. These are all odd pages, under twoside, even pages will have the
left/right trims reversed. The outer frames indicate the stock size. Inside

the trim marks hint at where the page is positioned on the stock. 34
Layout of a title page for a book on typography 56
Example of a mandated title page style for a doctoral thesis 57
Example of a Victorian titlepage 58
Layout of a title page for a book on book design 59
Layout of a title page for a book aboutbooks 60
Class layout parameters for chapter titles. Working with

\beforechapskip need a little thought, see the text. 83
Displayed sectional headings 92
Run-in sectional headings 93
Header and footerslots 109
Paragraphing parameters 125
The layout parameters for general lists 139
Example extracts from toc, lof and lotfiles 145
Layout of a ToC (LoF, LoT)entry 145
Example framed figure oL 176

xviii LIST OF FIGURES

10.2 Example framed figureand caption 176
10.3 Exampleruled figure L o 177
104 Example ruled figureand caption L L L L oL 177
10.5 Example float with two illustrations 177
10.6 Graphiclinafloat 178
10.7 Graphic2insamefloat o L. 178
10.8 Leftcenteraligned 179
10.9 Right figure. This has more text than the adjacent caption (10.8) so the
heightsareunequal L L 179
10.10 Lefttopaligned o 180
10.11 Right figure. This has more text than the adjacent caption (10.10) so the
heightsareunequal 180
10.12 Leftbottomaligned 181
10.13 Right figure. This has more text than the adjacent caption (10.12) so the
heightsareunequal L .. 181
10.14 Float and text page parameters 183
10.15 Floatparameters. 184
10.16 Long \bitwonumcaption 197
10.16 Lang \bitwonumcaption 197
10.17 Long English \bionenumcaption 197
Lang Deutsch \bionenumcaption 197
10.18 Short English \bicaption. 198
10.19 Figure withtwosubfigures. 201
(a) Subfigure 1 201
(b) Subfigure2 201
10.20 A picture is worth a thousandwords 208
10.21 A different kind of figurecaption o o L. 209
11.1 Exampleofaregulartabular. 226
11.2 Example tabularx and tabular* with widths of 250pt 227
11.3 Example tabularx and tabular* with widths of 300pt 228
114 Changing the width of a row ordered table 234
11.5 Changing the width of a column ordered table 235
12.1 Footnote layout parameters 241

12.2 Interpretation of the arguments to the \Xmargin commands for specifying
the side in which to place side note like material. X here equals marginpar,

sidepar, sidebar, or sidefoot.o L 245

12.3 Exampleendnotelisting oo L. 253
17.1 Raw indexing: (left) index commands in the source text; (right) idx file entries 313
17.2 Processed index: (left) alphabeticized ind file; (right) typeset index 314
18.1 The four trimmarktypes L oo 331
(a) \trimXmarks (default) 331

(b) \Erimlmarks oo e 331

(c) \trimFrame. e 331

LIST OF FIGURES xix

21.1
21.2

B.1
B.2
B.3
B4
B.5
B.6
B.7
B.8
B.9
B.10
B.11
B.12
B.13
B.14
B.15
B.16
B.17
B.18
B.19
B.20
B.21
B.22
B.23
B.24
B.25
B.26

D.1
D.2
D.3
D4
D.5

(d) \quarkmarks 331
Example Archibald Smythe University titlepage 380
Example Archibald Smythe University approvalpage 381
The default chapterstyle 393
The section chapterstyle 394
The hangnum chapterstyle 394
The companion chapterstyle 395
The article chapterstyle 395
The bianchi chapterstyle 396
The bringhurst chapterstyle 396
The brotherton chapterstyle 397
The chappell chapterstyle 397
The crosshead chapterstyle. 398
The culver chapterstyle 398
The dash chapterstyle 398
The demo2 chapterstyle 399
The dowding chapterstyle 399
Theell chapterstyle 400
The ger chapterstyle 400
The komalike chapterstyle 401
The lyhne chapterstyle. This style requires the graphicx package 401
The madsen chapterstyle. This style requires the graphicx package 402
The ntglike chapterstyle 403
The southall chapterstyle 403
The tandh chapterstyle 404
The thatcher chapterstyle 404
The veelo chapterstyle. This style requires the graphicx package 405
The verville chapterstyle 405
The wilsondob chapterstyle 406
Some points in the cartesian coordinate system 420
Specificationof alineorarrow 429
Sloping linesand arrows o 430
Some measuring scales L L L L Lo L 433
TwoBeziercurves 437

List of Tables

1 Traditional font size designations x1
2 Printersumits x1
1.1 Class stock metric paper size options, and commands 1
1.2 Class stock US paper size options, and commands 2
1.3 Class stock British paper size options, and commands 2
2.1 Arguments and results for \settrimmedsize and \settypeblocksize . 12
22 Average characters perline 14
2.3 Lowercase alphabet lengths, in points, for various fonts 16
24 Arguments and results for \setlrmargins 18
2.5 Arguments and results for \setlrmarginsandblock 18
2.6 Arguments and results for \setulmargins 20
2.7 Arguments and results for \setulmarginsandblock 20
2.8 Arguments and results for \setheaderspaces 21
2.9 The class and LaTeX page layout parameters 24
2.10 Results from sample \textheight adjustments 25
3.1 Glyphsin the LaTeX supplied Palatino roman font 36
3.2 Glyphsin the LaTeX distributed Symbol font 37
3.3 Glyphsin the LaTeX distributed Zapf Dingbatfont 38
3.4 Fontcategorisationand commands oL 42
3.5 Fontdeclarations 42
3.6 Standard font size declarations o o o oL 45
3.7 Standard fontsizes L 45
3.8 The memoir class font size declarations 46
3.9 The memoirclass fontsizes 46
6.1 Divisionlevels 77
6.2 Default display sectioning layout parameter values 93
6.3 Default run-in sectioning layout parameter values 93
6.4 Values for S in section styling macronames. 93
6.5 Default fonts for sectional headings 101
6.6 Fonts used by different headstyles 103
71 Theuseof \thispagestyle 108
7.2 Mark macros for pageheaders 0L 109

XX

LIST OF TABLES

91 Indentsand Numwidths
9.2 Values for X in macros for styling the titles of ‘Listof...”
9.3 Value of K in macros for styling entries ina ‘Listof...”

10.1 Float placement parameters
10.2 Float spacing parameters
10.3 Redesigned table captionstyle.
104 A multi-parttableo oo
10.5 Anothertable
Legendary table (toc1)

Legendary table (toc2)
10.6 Permitted arguments for some sidecaption related commands

11.1 The array and tabular preamble options.
11.2 Demonstrating the partsofatable
11.3 Twoviewsofonetable
114 Micawber’slaw
11.5 Anarrow tablesplithalfand half
11.6 Exampletablewithfills.
11.7 Example automatic row ordered table

121 Some footnote textstyles L L

17.1 Makelndex configuration file input parameters
17.2 Makelndex configuration file output parameters

18.1 Some defined words and phrases. The term °~ marks macros un-
der language control (babel), see the \setlocalecaption (old way:
\addto\captions(language)) feature in babel for how to properly change
them. Note that these should never contain formatting such as bold etc. . . .

E.1 Some internal macros fornumbers

xxi

List of typeset examples

31 Badlymixedfonts 42
3.2 Sometimes mixed fontswork L Lo Lo oL 43
3.3 Emphasisuponemphasis 0 000 44
4.1 Example \maketitletitle, 62
6.1 Avariety of subheadstyles 97
8.1 Setting the source of a quotation 128
8.2 Paragraph’slinenottooshort 130
83 Rulesforspaces 131
84 Raggedparagraphs 132
85 Asprungparagraph L 133
8.6 Smallcap quote style descriptionlist 137
8.7 Changing space before and afterlists 141
11.1 Tabular with narrow and wide headings 216
14.1 Phantomtextinverse. oo 268
14.2 Verse with regular quotemarks 269
14.3 Verse with hanging left quotemarks 269
18.1 TeX’s minimum number in words (Englishstyle) 341
18.2 TeX’s maximum number in words (Americanstyle) 342
18.3 Varieties of fractionsintext Lo .. 343
18.4 Super-and subscriptsintext. o o oL oL 343
D.1 Picturertext 422
D.2 Picture: textinboxes o o 423
D.3 Picture: positioning text L o L oo 424
D.4 Picture: dashedbox Lo o 424
D.5 Picture: framing 425
D.6 Picture:stacking 426
D.7 Picture:savedboxes 427
D.8 Picture:circles 430
D9 Picture:ovals 431
D.10 Picture: textinoval L o 432
D.11 Picture: repetitions L o 435

xxii

Remarks from the maintainer

When Peter Wilson released the first version of memoir (back in 2001), XTEX land was very
different. Updating packages outside of the yearly release (TeXLive) had to be done by
hand. Manuals for packages was not even a requirement for CTAN. Thus it made sense to
embed the functionality from several packages and provide usage information about them
in this very manual. Peter even added a lot of historical notes as well, that was later spun
of as a separate document of its own (see [?]). As time progressed methods were set in
place to make it easier to update packages during a release cycle and later packages and
classes were required to always provide a suitable manual.

Over the past five years I have moved several packages out from being embedded
copies over to simply loading them as packages.! As it is useful to have usage description
in one place, we have kept that in the manual, but users should always refer back to the
packages original manuals. Summer 2023, I moved booktabs from embedding to loading.

As of Summer 2023 (begining with memoir version 3.8) things are changing a for memoir.
In the past 4 years (begining in 2019) the I£IEX Team have added lot of new functionality
into the XX format.? They will continue to add extra features to the kernel that are going
to be very useful in the future, both at the level of class and package writers, but also at
user level. As such we would like to begin using these new features without having to also
provide backwards compatibility for those (few) users who manually update memoir.?

Counting from version 3.8 we will therefore now require users to have a modern KEIgX
kernel installed. For memoir version 3.8 a user who manually updates memoir will need
to have a KTEX format released by 2021/06/01 or later. If the version is too old memoir
will halt the compilatiion to force users to react to the error and not just ignore it.* In case
we would like to use functionality that are in a even newer formats, we will make sure that
these macros are provided by the class (eventhough they may do nothing unless you have
the proper kernel).

Going forward a main goal of the ETEX Team is the ability to tag PDF files. The mem-
oir class will also have to be adapted to become compatible with this feature. For ver-

10One of the main reasons to do so was maintance, it is not feasible to keep track of changes to an embedded
package and then applying those to memoir.

2Most notably most of the xparse package, plus the entire ISTEX3 programming layer.

30verleaf users should be aware that Overleaf does not update packages or kernels on their IATEX images.
So if we say the cut off is summer 2021, Overleaf might not have the correct kernel update in their version of
TeXLive 2021.

“Most IATEX editors incuding OverLeaf use ~interaction=nonstopmode, aka try do make a PDF even if
there are compilation errors. On old kernels, memoir will end even this!

XX1il

XXiv REMARKS FROM THE MAINTAINER

sion 3.8 this required us to rework how \titleref was implemented as we should no
longer redefine \label.®

Additionally, going forward I will additionally be starting to look at removing certain func-
tionality from memoir. This will be things that does not really belong in memoir. Things
that users ought to get from somewhere else (some additional package). Unless it is clear
that the macro has to go due to reimplemantation of a feature or that the feature probably
is not used by that many people, the removal will be announced in advance (say 12-18
months), by adding a warning to the macro (especially if we would like the user to use a
different macro). It will also be marked in the manual that the macro/environment will be

removed in a future release.
Summer 2023
/daleif

In this over due update we fixed several things. Details are listed in the README, which
can be found in the README . As listed below, some macros are not marked for removal.
For existing documents the redefinition of \cftchapterbreak, might be of interest as it
will affect the look of documents that have changed this macro. See pages 152-154 for de-
tails, where it is also listed the the most frequent reason to redefine \cftchapterbreak
(chanding the penalty) has now neen factored out so the penalty can be changed directly.
We have also started adding warnings against packages that should not be used with mem-
oir.
March 2025
/daleif

This maintenance update that fixes several bugs and marks more macros for deletion. De-

tails are as usual listed in the README . As for the tagging project, we do not have

anything concrete yet, but have been doing some promising experiments. The required
kernel version is now set at 2023/06/01.

Summer 2025

/daleif

MACROS MARKED TO BE REMOVED IN 2026

Each will work, but their first use will issue a warning in the log.

\addtodef, \addtodef*, \addtoiargdef, \addtoiargdef*, \patchcommand
Their effect can be achived using tools from etoolbox and xpatch (both autoloaded
by the class).

\newloglike, \provideloglike
Users should really use \DeclareMathOperator from amsopn (autoloaded by ams-
math). Note there is currently no equivalent for \provideloglike.

S\titleref is now an alias for \nameref (from the nameref package), a package which is maintained in
close relation with hyperref.

https://mirrors.ctan.org/macros/latex/contrib/memoir/README
https://mirrors.ctan.org/macros/latex/contrib/memoir/README

XXV

\fref, \tref, \pref, \Aref, \Bref, \Pref, \Cref, \Sref
These are all convenience reference macros from when Peter W created the class.
With hyperref and modern reference packages, users should make their own macros,
instead of having to redefine these class macros.
The macros will give a deprecation warning at first use, unless the macro is already
defined in the preamble.

Users can just add the following to their preamble:

\newcommand*{\fref}[1]{\figurerefname~\ref{#1}}
\newcommand*{\tref} [1]{\tablerefname~\ref{#1}}
\newcommand*{\pref}[1] {\pagerefname~\pageref{#1}}
\newcommand*{\Aref} [1]{\appendixrefname~\ref{#1}}
\newcommand*{\Bref} [1]{\bookrefname~\ref{#1}}
\newcommand*{\Pref}[1]{\partrefname~\ref{#1}}
\newcommand*{\Cref} [1]{\chapterrefname~\ref{#1}}
\newcommand*{\Sref}[1] {\sectionrefname\ref{#1}}

in order to get rid of the warning.

\settocpreprocessor
It was added in order to fix the problem of using, say, \MakeUppercase on toc en-
tried. hyperref did not like that. This has now beed fixed in the kernel/hyperref so
there is no need for it anymore.

PUBLIC INTERFACES REMOVED/DISABLED IN V3.8.4

\label ((bookmark)) {{labstr)}
inside \subcaption and friends. This “ ({bookmark))” part is a non-standard syntax
and is too hard to keep working. The standard \1abel{(labstr)} continues to work
of course.

PUBLIC INTERFACES REMOVED/DISABLED IN V3.8.2

The following macros were discontinued due to the un-embedding of the verbatim pack-
age
\tabson, \tabsoff
Used to be able to enable/disable tab marking support in verbatim texts. \tabson
issues a warning and does nothing.
\wrappingon, \wrappingoff
Used to be able to enable automatic line breaking at white space in verbatim texts.®
\wrappingon issues a warning and does nothing.

\verbatimbreakchar
Left on a verbatim line broken at white space.

6The implementation had bugs which were never reported, thus probably not used that much.

XXVi REMARKS FROM THE MAINTAINER

PUBLIC INTERFACES REMOVED/DISABLED IN V3.8

The four title macros was disabled due to the \titleref reimplementation.
\currenttitle

Would have given the title of the current sectional devide. Too risky to rely on, use
\label+\titleref instead. Throws an error if used.

\namerefon, \namerefoff
These could turn sectional title referencing on/off. As we now load nameref by de-
fault, the value is always on. Both macros now just give a warning.

\theTitleReference
Could control the look of \titleref. Does nothing but issue a warning.

noetex (class option)
We only loaded etex for formats before 2015. The package loading and the class
option have been removed.

Preface

From personal experience and also from lurking on the comp . text.tex newsgroup the
major problems with using LaTeX are related to document design. Some years ago most
questions on CTT were answered by someone providing a piece of code that solved a par-
ticular problem, and again and again. More recently these questions are answered along
the lines of ‘Use the package’, and again and again.

I have used many of the more common of these packages but my filing system is not
always well ordered and I tend to mislay the various user manuals, even for the packages I
have written. The memoir class is an attempt to integrate some of the more design-related
packages with the LaTeX book class. I chose the book class as the report class is virtually
identical to book, except that book does not have an abstract environment while report
does; however it is easy to fake an abstract if it is needed. With a little bit of tweaking,
book class documents can be made to look just like article class documents, and the memoir
class is designed with tweaking very much in mind.

The memoir class effectively incorporates the facilties that are usually accessed by us-
ing external packages. In most cases the class code is new code reimplementing package
functionalities. The exceptions tend to be where I have cut and pasted code from some
of my packages. I could not have written the memoir class without the excellent work
presented by the implementors of LaTeX and its many packages.

Apart from packages that I happen to have written I have gained many ideas from
the other packages listed in the Bibliography. One way or another their authors have all
contributed, albeit unknowingly. The participants in the comp.text.tex newsgroup
have also provided valuable input, partly by questioning how to do something in LaTeX,
and partly by providing answers. It is a friendly and educational forum.

PETER WILSON
Seattle, WA
June 2001

XXVvii

comp.text.tex
comp.text.tex

Introduction to the eighth edition

The memoir class and this manual have seen many changes since they first saw the light of
day. The major functions, and extensions to them, were listed in the various introductions
to the previous editions of this manual and it would now be tedious to read them.

The memoir class was first released in 2001 and since then has proven to be reasonably
popular. The class can be used as a replacement for the book and report classes, by default
generating documents virtually indistinguisable from ones produced by those classes. The
class includes some options to produce documents with other appearances; for example an
article class look or one that looks as though the document was produced on a typewriter
with a single font, double spacing, no hyphenation, and so on. In the following I use the
term ‘standard class’ to denote the book and report classes and, when appropriate, the
article class as well.

The memoir class includes the functionality of many packages, for instance the tocloft
package for controlling the table of contents or methods similar to the fancyhdr package
for designing your own headers. The built-in package functions are mainly related to
document design and layout; memoir does not touch upon areas like those that are covered
by the babel or hyperref packages or any related to typesetting mathematics. On the other
hand it is easy to configure a work produced with memoir to meet a university’s thesis
layout requirements.

The memoir class has improved substantially since it was first released — over 50 La-
TeXers have provided code or suggestions for improvements. The class is included in the
TeX Users Group TeX distributions and the latest version of the class and its supporting
documentation is always available from CTAN at latex/contrib/memoir.

This is not a guide to the general use of LaTeX but rather concentrates on where the
memoir class differs from the standard LaTeX book and report classes. There are other
sources that deal with LaTeX in general, some of which are noted later. I assume that you
have already used LaTeX and therefore know how to prepare a LaTeX manuscript, how to
run LaTeX and print the resulting document, and that you can also use auxiliary programs
like Makelndex and BibTeX.

GENERAL CONSIDERATIONS

The class is a large one consisting of about 10,000 lines of LaTeX code documented in a 400
page report; there is no need for most users to look at this [?]. However if you want to
see exactly how some part, or all of, memoir is defined it is there for you to peruse. The
document you are now reading is the separate comprehensive User Manual [?] which runs
to about 500 pages, and from time to time an Addendum is released noting extensions to

XX1X

latex/contrib/memoir

XXX INTRODUCTION TO THE EIGHTH EDITION

the class.” Again, if you want to see how something was done in this Manual, which of
course was prepared using memoir itself, the source is available for you to read.

The previous editions of the Manual consisted of two parts. The first discussing some
aspects of book design and typography in general, something that I hadn’t come across in
the usual LaTeX books and manuals. That was intended to provide a little background for
when you design your own printed documents. The second, and by far the longest part,
described the capabilities of memoir and how to use them.

The Manual kept growing until it was approaching 700 pages and I decided that it was
better to put the original discussion on typography into a separate document [?], which is
independent of memoir, and in this edition concentrate on how to use memoir. This has
reduced the size of this document, but it is still large.

This manual is not a LaTeX tutorial; I assume that you already know the basics. If
you don’t then there are several free tutorials available. In some instances I show you
the internal code for the class which may involve LaTeX commands that you won’t come
across in the tutorials and also sometimes basic TeX commands. Information on these, if
you want it, is obtained from reading the LaTeX source itself and the TeXbook, and perhaps
one of the free TeX manuals such as TeX for the Impatient [?] or TeX by Topic [?].

CLASS OPTIONS

The standard classes provide point options of 10, 11, or 12 points for the main body font.
memoir extends this by also providing a 9 point option, and options ranging from 14 to
60 points. The width of the text block is automatically adjusted according to the selected
point size to try and keep within generally accepted typographical limits for line lengths;
you can override this if you wish. The class also provides easy methods for specifying the
page layout parameters such as the margins — both the side margins and those at the top
and bottom of the page; the methods are similar to those of the geometry package.

The page layout facilities also include methods, like those provided by the fancyhdr
package, for defining your own header and footer styles, and you can have as many differ-
ent ones as you wish. In fact the class provides seven styles to choose from before having
to create your own if none of the built-in styles suit you.

Sometimes it is useful, or even required, to place trimming marks on each page show-
ing the desired size of the final page with respect to the sheet of paper that is used in the
printer. This is provided by the showtrims option. A variety of trim marks are provided
and you can define your own if you need some other kind.

SECTIONING STYLES

Handles are provided for designing and using your own styles for chapter titles and such.
The class comes with over 20 predefined chapter styles ranging from the default look to
a style that mimics that used in the Companion series of LaTeX books. There are even a
couple which use words instead of numerals for chapter numbers.

For those who like putting quotations near chapter titles the epigraph environment
can be used.

7Currently not in use.

CAPTIONS Xxxi

The options for changing \section and lower level titles are more constrained, but
generally speaking document design, unless for advertisements or other eye-catching
ephemera, should be constrained. The class does provide 9 integrated sets of sectional
heading styles instead of the usual single set.

Sometimes, but particularly in novels, a sectional division is indicated by just leaving a
blank line or two between a pair of paragraphs, or there might be some decorative item like
three or four asterisks, or a fleuron or two. (A fleuron is a printers ornament looking like a
leaf, such as ® or «.) Commands are available for typesetting such anonymous divisions.

In the standard classes the sectioning commands have an optional argument which
can be used to put a short version of the section title into the table of contents and the
page header. memoir extends this with a second optional argument so you can specify one
short version for the contents and an even shorter one for page headers where space is at
a premium.

CAPTIONS

memoir incorporates the code from my ccaption package which lets you easily modify
the appearance of figure and table captions; bilingual captions are available if required,
as are captions placed at the side of a figure or table or continuation captions from, say,
one illustration to another. Captioning can also be applied to ‘non-floating” illustrations
or as legends (i.e., unnumbered captions) to the regular floats. The captioning system also
supports subfigures and subtables along the lines of the subfig package, plus letting you
define your own new kinds of floats together with the corresponding “List of...”.

TABLES

The array, dcolumn, delarray, tabularx are automatically loaded by the class. In earlier days
their code were embedded into the class, nowadays we just load the respective packages.
To improve the appearance of rules in tabular material the booktabs package is also in-
cluded (as a code copy, this may change in the future).

Multipage tabulations are often set with the longtable or xtab packages, which can of
course be used with the class. For simple tabulations that may continue from one page
to the next, memoir offers a ‘continuous tabular’ environment. This doesn’t have all the
flexibility provided by the packages but can often serve instead of using them.

More interestingly, but more limited, the class provides ‘automatic tabulars’. For these
you provide a list of simple entries, like a set of names, and a number of columns and the
entries are automatically put into the appropriate column. You choose whether the entries
should be added row-by-row, like this with the \autorows command:

\autorows{c}{5}{1}{one, two, three, four,
five, six, seven, eight, nine, ten,
eleven, twelve, thirteen }

one two three four five
Six seven eight nine ten
eleven twelve thirteen

Or if you use the \autocols command the entries are listed column-by-column, like
this :

xXxxii INTRODUCTION TO THE EIGHTH EDITION

\autocols{c}{5}{1}{one, two, three, four,
five, six, seven, eight, nine, ten,
eleven, twelve, thirteen }

one four seven ten thirteen
two five eight eleven
three six nine twelve

VERSE

The standard classes provide a very simple verse environment for typesetting poetry.
This is greatly extended in memoir. For example in the standard classes the verse stanzas
are at a fixed indentation from the left margin whereas memoir lets you control the amount
of indentation so that you can make a poem appear optically centered within the textwidth.

Stanzas may be numbered, as can individual lines within a poem. There is a special
environment for stanzas where lines are alternately indented. Also you can define an
indentation pattern for stanzas when this is not regular as, for example, in a limerick where
the 3rd and 4th of the five lines are indented with respect to the other three as shown below.

\indentpattern{00110}

\begin{verse}

\begin{patverse}

There was a young man of Quebec \\

Who was frozen in snow to his mneck. \\
When asked: ‘Are you friz?’ \\

He replied: ‘Yes, I is, \\

But we don’t call this cold in Quebec.’
\end{patverse}

\end{verse}

There was a young man of Quebec
Who was frozen in snow to his neck.
When asked: ‘Are you friz?’
He replied: “Yes, L is,
But we don’t call this cold in Quebec.”

It is not always possible to fit a line into the available space and you can specify the par-
ticular indentation to be used when a ‘logical’ verse line spills over the available textwidth,
thus forming two or more typeset ‘physical’ lines. On other occasions where there are two
half lines the poet might want the second half line to start where the first one finished, like
this:

\begin{verse}

Come away with me. \\

\vinphantom{Come away with me.} Impossible!
\end{verse}

Come away with me.
Impossible!

END MATTER xxxiii

END MATTER

Normally appendices come after the main body of a book. The class provides various
methods for introducing appendices at the end, or you can place one or more appendices
at the end of selected chapters if that suits you better.

memoir also lets you have more than one index and an index can be set in either the
normal double column style or as a single column which would be more appropriate, say,
for an index of first lines in a book of poetry. The titles of any bibliography or indexes are
added to the table of contents, but you can prevent this if you wish.

The class provides a set of tools for making glossaries or lists of symbols, the appear-
ance of which can, of course, be easily altered. The Makelndex program is used to sort the
entries. Also, the class provides configurable end notes which can be used as well as, or
instead of, footnotes.

MISCELLANEOUS

Hooks and macros are provided for most aspects of document layout; for instance, foot-
notes can be as normal, typeset in two or three columns, or all run into a single paragraph.
There is a \sidepar macro which is a non-floating \marginpar as well as the \sidebar
macro for typesetting sidebars in the margin, starting at the top of the text block. You
can create new verbatim-like environments, read and write information in external files,
design your own style of \maketitle, convert numbers to words, reserve space at the
bottom of a page, and so on and so forth.

PACKAGES

Most packages work with the memoir class, the main exception being the hyperref package.
This package modifies many of the internals of the standard classes but does not cater for
all of the differences between memoir and the standard ones.

If you use hyperref with memoir then the memhfixc package® is automatically loaded
by hyperref to provide some class specific alterations.

The memoir class includes code either equivalent to, or extensions of, the following
packages; that is, the set of commands and environments is at least the same as those in
the packages:

abstract, appendix, booktabs, ccaption, chngcntr, chngpage, enumerate,
epigraph, framed, ifmtarg, index, makeidx, moreverb, needspace, newfile,
nextpage, parskip, patchcmd, setspace, showidx, titleref, titling, tocbibind,
tocloft, verbatim, verse.

The class automatically ignores any \usepackage or \RequirePackage related to
these. However, if you want to specifically use one of these packages rather than the
integrated version then you can do so. For arguments sake, assuming you really want to
use the titling package you can do this:

\documentclass[...]{memoir}
\DisemulatePackage{titling}
\usepackage{titling}

8memhfixc is supplied as part of the memoir distribution.

XXX1V INTRODUCTION TO THE EIGHTH EDITION

The memoir class incorporates a version of the setspace package, albeit using different
names for the macros. The package enables documents to be set double spaced but leaves
some document elements, like captions for example, single spaced. To do this it has to
make some assumptions about how the document class works. I felt that this kind of
capability should be part of the class and not depend on assumptions. In the particular
case of the setspace package, even with the standard classes, there can be some unexpected
spacing around displayed material; this has not occured with memoir’s implementation.

The class also provides functions similar to those provided by the following packages,
although the commands are different:

crop, fancyhdr, geometry, sidecap, subfigure, titlesec.

You can use these packages if you wish, or just use the capabilities of the memoir class.
The class has built in support for the bidi package for bidirectional typesetting [?].
The following packages are automatically loaded by the class:

array, dcolumn, delarray, iftex, tabularx, textcase (with overload option),
xpatch (it autoloads etoolbox), booktabs, nameref, mparhack (if twocolumn),
membhfixc (if hyperref is loaded), shortvrb

RESOURCES

Scattered throughout are comments about aspects of book design and typography, in some
cases accompanied by examples of better and poorer practice. If you want more comments
and examples there are some notes on the topic [?], and for authorative remarks there are
several books on the subject listed in the Bibliography; I prefer Bringhurst’s The Elements
of Typographic Style [?], while Derek Birdsall’s notes on book design [?] is much more oriented
to illustrated works, like museum catalogues and art books.

LaTeX is based on the TeX program which was designed principally for typesetting
documents containing a lot of mathematics. In such works the mathematics breaks up the
flow of the text on the page, and the vertical space required for displayed mathematics
is highly dependent on the mathematical particularities. Most non-technical books are
typeset on a fixed grid as they do not have arbitrary insertions into the text; it is these
kinds of publications that typographers are most comfortable talking about.

There are other sources that deal with LaTeX in general, some of which are listed in
the Bibliography. Lamport [?] is of course the original user manual for LaTeX, while the
Companion series [?, ?, ?] go into further details and auxiliary programs. George Grétzer’s
Math into LaTeX is valuable if you typeset a lot of mathematics with excellent coverage of
the American Mathematical Society’s packages.

The Comprehensive TeX Archive Network (CTAN) is an invaluable source of free in-
formation and of the LaTeX system itself. For general questions see the FAQ (Frequently
Asked Questions, and answers) maintained by Robin Fairbairns [?], which also has point-
ers to many information sources. Among these are The Not So Short Introduction to La-
TeX2e [?], Keith Reckdahl’s Using imported graphics in LaTeX2e [?] and Piet van Oostrum’s
Page layout in LaTeX [?]. Peter Flynn’s Formatting information [?] is unique in that it de-
scribes how to install a LaTeX system and editors for writing your documents as well as
how to use LaTeX. There are a myriad of packages and software tools freely available to

TYPE CONVENTIONS XXXV

enhance any LaTeX system; the great majority of these are listed in Graham Williams’ mag-
nificent on line searchable catalogue [?], which also links directly to CTAN. This is just one
of the services offered by the TeX Users Group (TUG) and information on how to access it
is available at http://www.tug. org which is the homepage for the TeX Users Group.

The most recent crops of messages on the comp.text.tex newsgroup (CTT) show
an increasing interest in using a wider range of fonts with LaTeX. This is a question that
I have left alone. Alan Hoenig’s book [?] is the best guide to this that I know of. CTAN
hosts Philipp Lehman’s font installation guide [?]; this is well worth looking at just as an
example of fine typesetting.

The source code for the memoir class is, of course, freely available from CTAN if you
wish to see exactly what it does and how it does it.

For a more interactive resource you can ask questions on

http://tex.stackexchange.com.

— if the question is memoir related, please tag it so.

TYPE CONVENTIONS

The following conventions are used:
e The names of LaTeX classes and packages are typeset in this font.

¢ (lass options are typeset in this font.
* The names of chapterstyles and pagestyles are typeset in this font.
e LaTeX code is typeset in this font.

¢ The names of programs are in this font.

Macro command syntax is enclosed in a rectangular box.
For referential purposes, arguments are denoted by (arg)

ACKNOWLEDGEMENTS

Many people have contributed to the memoir class and this manual in the forms of code,
solutions to problems, suggestions for new functions, bringing my attention to errors and
infelicities in the code and manual, and last but not least in simply being encouraging.
I am very grateful to the following for all they have done, whether they knew it or not:
Paul Abrahams, William Adams, Tim Arnold, Donald Arseneau, Stephan von Bechtol-
sheim, Jens Berger, Karl Berry, Ingo Beyritz, Javier Bezos, Stefano Bianchi, Sven Bovin,
Alan Budden, Ignasi Furi6é Caldentey, Ezequiel Martin Camara, David Carlisle, Gustafo
Cevolani, Jean-Come Charpentier, Michael A. Cleverly, Steven Douglas Cochran, Fred-
eric Connes, Zarko F. Cuéej, Christopher Culver, Iain Dalton, Michael W. Daniels, Michael
Downes, Christopher Dutchyn, Thomas Dye, Victor Eijkhout, Roman Eisele, Danie Els,
Robin Fairbairns, Simon Fear, Anténio Ferreira, Kai von Fintel, Ivars Finvers, Ulrike Fis-
cher, Matthew Ford, Musa Furber, Daniel Richard G, Ignacio Ferndndez Galvan, Ger-
ardo Garcia, Romano Giannetti, Kheng-Swee Goh, Donald Goodman, Gabriel Guernik,
Matthias Haldiman, Kathryn Hargreaves, Sven Hartrumpf, hazydirk, Carsten Heinz, Flo-
rence Henry, Peter Heslin, Timo Hoenig, Morten Hogholm, Henrik Holm, Vladimir G.
Ivanovi¢, Martin Jergensen, Stefan Kahrs, Christian Keil, Marcus Kohm, Flavian Lambert,

http://www.tug.org
comp.text.tex
http://tex.stackexchange.com

XXXV INTRODUCTION TO THE EIGHTH EDITION

Jogen Larsen, Kevin Lin, Matthew Lovell, Daniel Luecking, Anders Lyhne, Lars Hendrik
Gam Madsen, Lars Madsen, Vittorio De Martino, Ben McKay, Frank Mittelbach, Wilhelm
Miiller, Vilar Camara Neto, Rolf Niepraschk, Patrik Nyman, Heiko Oberdiek, Scott Pakin,
Adriano Pascoletti, Paul, Ted Pavlic, Troels Pedersen, Steve Peter, Francois Poulain, Erik
Quaeghebeur, Bernd Raichle, Martin Reinders, Aaron Rendahl, René, Alan Ristow, Robert,
Chris Rowley, Gary Ruben, Robert Schlicht, Doug Schenck, Dirk Schlimm, Arnaud Schmit-
tbuhl, Rainer Schopf, Paul Stanley, Per Starback, James Szinger, Jens Taprogge, Ajit
Thakkar, Scott Thatcher, Reuben Thomas, Bastiaan Niels Veelo, Guy Verville, Emanuele
Vicentini, Jorg Vogt, Jiirgen Vollmer, M] Williams, and David Wilson.

If I have inadvertently left anyone off the list I apologise, and please let me know so
that I can correct the omisssion.” Along those lines, if you have any questions you may
post them on http://tex.stackexchange.com as you are likely to get a satisfactory
and timely response.

Of course, none of this would have been possible without Donald Knuth’s TeX system
and the subsequent development of LaTeX by Leslie Lamport.

9Please write the maintainer at daleif at math dot au dot dk

http://tex.stackexchange.com

Remarks to the user

The memoir class gives you many ways to change the appearance of your document, and
also provides some ready-made styles that might be appropriate for your purposes.

As you can see, this manual is not slim and attempts to describe in some detail how
the various aspects of memoir work and gives examples of how you can change these to
better match your needs. However, there are a myriad of different things that users might
wish to do and it is not possible either for the class to provide ready made simple, or even
complex, methods to directly support these, or for this manual to give examples of how
everything might be accomplished.

If many want a particular facility that is not available, then it may be possible to add
that. If it is only one who wishes it then, unless the one is the author, it is unlikely to
be provided. But don't let this stop you from asking, especially if you can provide the
necessary code.

The complete documented code for the class is available in the file memoir.dtx. If you
want to know how something is done then you can read the code for all the details. If you
want to do something different, then the code is there for you to look at and experiment
with. You should, though, not change any of the code in the class. If you need to do so,
then copy the code you wish to change into the document’s preamble or a package of your
own or a class of your own (with a different name) and make the changes there. Do not
expect any help if you change the memoir class code directly.

As the years go by support for memoir will devolve from one person to another.'’ There-
fore it is probably safer to ask questions, complain, make suggestions, etc., on a Q&A site
like http://tex.stackexchange.com, which is archived and read by many, than cor-
respond directly with the maintainer, who might well be away for some considerable time
and perhaps not notice your email after having returned to base.

In either case please include the word memoir in the subject, and if possible, please
tag the question with the memoir tag. That will help the memoir maintainer keep track of
memoir related matters.

Most memoir related questions should go to http://tex.stackexchange.com, please
remember to tag them properly, that really helps locating the memoir related questions. If
no-one comes up with an answer, you can also write the maintainer directly via daleif
(at) math dot au dot dk.

See also Remarks from the maintainer on page xxiii for furher information from the main-
tainer.

10Lars Madsen took over from Peter Wilson in 2009.

XXXVii

http://tex.stackexchange.com
http://tex.stackexchange.com

Terminology

Like all professions and trades, typographers and printers have their specialised vocabu-
lary.

First there is the question of pages, leaves and sheets. The trimmed sheets of paper that
make up a book are called leaves, and I will call the untrimmed sheets the stock material. A
leaf has two sides, and a page is one side of a leaf. If you think of a book being opened flat,
then you can see two leaves. The front of the righthand leaf, is called the recto page of that
leaf, and the side of the lefthand leaf that you see is called the verso page of that leaf. So,
a leaf has a recto and a verso page. Recto pages are the odd-numbered pages and verso
pages are even-numbered.

Then there is the question of folios. The typographical term for the number of a page
is folio. This is not to be confused with the same term as used in ‘Shakespeare’s First Folio’
where the reference is to the height and width of the book, nor to its use in the phrase
‘folio signature” where the term refers to the number of times a printed sheet is folded. Not
every page in a book has a printed folio, and there may be pages that do not have a folio at
all. Pages with folios, whether printed or not, form the pagination of the book. Pages that
are not counted in the pagination have no folios.

I have not been able to find what I think is a good definition for ‘type’ as it seems to
be used in different contexts with different meanings. It appears to be a kind of generic
word; for instance there are type designers, type cutters, type setters, type foundries,...
For my purposes I propose that type is one or more printable characters (or variations or
extensions to this idea). Printers use the term sort to refer to one piece of lead type.

A typeface is a set of one or more fonts, in one or more sizes, designed as a stylistic
whole.

A font is a set of characters. In the days of metal type and hot lead a font meant a com-
plete alphabet and auxiliary characters in a given size. More recently it is taken to mean
a complete set of characters regardless of size. A font of roman type normally consists
of CAPITAL LETTERS, SMALL CAPITALS, lowercase letters, numbers, punctuation marks,
ligatures (such as ‘fi” and ‘ffi’), and a few special symbols like &.

A font family is a set of fonts designed to work harmoniously together, such as a pair of
roman and italic fonts.

The size of a font is expressed in points (72.27 points equals 1 inch equals 25.4 millime-
ters). The size is a rough indication of the height of the tallest character, but different fonts
with the same size may have very different actual heights. Traditionally font sizes were
referred to by names (see Table 1) but nowadays just the number of points is used.

The typographers’ and printers’ term for the vertical space between the lines of normal
text is leading, which is also usually expressed in points and is usually larger than the font

XXX1X

x1 TERMINOLOGY

Table 1: Traditional font size designations

Points Name Points Name
3 Excelsior 11 Small Pica
31/, Brilliant 12 Pica
4 Diamond 14 English
5 Pearl 18 Great Primer
51/, Agate 24 Double (or Two Line) Pica
6 Nonpareil 28 Double (or Two Line) English
6l/2 Mignonette 36 Double (or Two Line) Great Primer
7 Minion 48 French Canon (or Four Line Pica)
8 Brevier 60 Five Line Pica
9 Bourgeois 72 Six line Pica
10 Long Primer 96 Eight Line Pica

Table 2: Printers units

Name (abbreviation) Value

point (pt)

pica (pc) 1pc =12pt

inch (in) lin = 72.27pt
centimetre (cm) 2.54cm = lin
millimetre (mm) 10mm = lcm
big point (bp) 72bp = 72.27pt
didot point (dd) 1157dd = 1238pt
cicero (cc) lcc =12dd

size. A convention for describing the font and leading is to give the font size and leading
separated by a slash; for instance 10/12 for a 10pt font set with a 12pt leading, or 12/14 for
a 12pt font set with a 14pt leading.

The normal length of a line of text is often called the measure and is normally specified
in terms of picas where 1 pica equals 12 points (1pc = 12pt).

Documents may be described as being typeset with a particular font with a particular
size and a particular leading on a particular measure; this is normally given in a shorthand
form. A 10pt font with 11pt leading on a 20pc measure is described as 10/11 x 20, and
14/16 x 22 describes a 14pt font with 16pt leading set on a a 22pc measure.

UNITS OF MEASUREMENT

Typographers and printers use a mixed system of units, some of which we met above. The
fundamental unit is the point; Table 2 lists the most common units employed.

Points and picas are the traditional printers units used in English-speaking countries.
The didot point and cicero are the corresponding units used in continental Europe. In
Japan ‘kyus’ (a quarter of a millimetre) may be used as the unit of measurement. Inches
and centimetres are the units that we are all, or should be, familiar with.

UNITS OF MEASUREMENT xli

The point system was invented by Pierre Fournier le jeune in 1737 with a length of
0.349mm. Later in the same century Frangois-Ambroise Didot introduced his point system
with a length of 0.3759mm. This is the value still used in Europe. Much later, in 1886,
the American Type Founders Association settled on 0.013837in as the standard size for the
point, and the British followed in 1898. Conveniently for those who are not entirely metric
in their thinking this means that six picas are approximately equal to one inch.

The big point is somewhat of an anomaly in that it is a recent invention. It tends to be
used in page markup languages, like PostScript!!, in order to make calculations quicker
and easier.

The above units are all constant in value. There are also some units whose value de-
pends on the particular font being used. The em is the nominal height of the current font;
it is used as a width measure. An en is half an em. The ex is nominally the height of the
letter ‘x” in the current font. You may also come across the term quad, often as in a phrase
like ‘starts with a quad space’. It is a length defined in terms of an em, often a quad is lem.

PostScript is a registered trademark of Adobe Systems Incorporated.

One

Starting off

As usual, the memoir class is called by \documentclass [(options)] {memoir}. The
(options) include being able to select a paper size from among a range of sizes, selecting a
type size, selecting the kind of manuscript, and some related specifically to the typesetting

of mathematics.

1.1 STOCK PAPER SIZE OPTIONS

The stock size is the size of a single sheet of the paper you expect to put through the printer.
There is a range of stock paper sizes from which to make a selection. These are listed in
Table 1.1 through Table 1.3. Also included in the tables are commands that will set the
stock size or paper size to the same dimensions.

Note.
Similarily \page. . .

Note that the \stock. ..

macros set \stockheight and \stochwidth if executed.
commands sets \pageheight and \pagewidth.

Table 1.1: Class stock metric paper size options, and commands

Option Size stock size command page size command
alpaper 105mm x 74mm \stockavii \pageavii

abpaper 148 mm x 105mm \stockavi \pageavi

abpaper 210mm x 148mm \stockav \pageav

adpaper 297mm x 210mm \stockaiv \pageaiv

a3paper 420mm x 297mm \stockaiii \pageaiii

b7paper 125mm x 8mm \stockbvii \pagebvii

bbpaper 176 mm x 125mm \stockbvi \pagebvi

b5paper 250mm x 176 mm \stockbv \pagebv

b4paper 353mm x 250mm \stockbiv \pagebiv

b3paper 500mm x 353mm \stockbiii \pagebiii
mcrownvopaper 186 mm x 123mm \stockmetriccrownvo \pagemetriccrownvo
mlargecrownvopaper 198mm x 129mm \stockmlargecrownvo \pagemlargecrownvo
mdemyvopaper 216mm x 138mm \stockmdemyvo \pagemdemyvo

msmallroyalvopaper

234 mm x 156 mm

\stockmsmallroyalvo

\pagemsmallroyalvo

2 CHAPTER 1. STARTING OFF
Table 1.2: Class stock US paper size options, and commands

Option Size stock size command page size command

dbillpaper 7in x 3in \stockdbill \pagedbill

statementpaper 8.5in X 5.5in \stockstatement \pagestatement

executivepaper 10.5in x 7.25in \stockexecutive \pageexecutive

letterpaper 1lin x 8.5in \stockletter \pageletter

oldpaper 12in x 9in \stockold \pageold

legalpaper 14in x 8.5in \stocklegal \pagelegal

ledgerpaper 17in x 11in \stockledger \pageledger

broadsheetpaper 22in x 17in \stockbroadsheet \pagebroadsheet

Table 1.3: Class stock British paper size options, and commands

Option Size stock size command page size command
pottvopaper 6.25in x 4in \stockpottvo \pagepottvo
foolscapvopaper 6.75in x 4.25in \stockfoolscapvo \pagefoolscapvo
crownvopaper 7.5in X 5in \stockcrownvo \pagecrownvo
postvopaper 8in x 5in \stockpostvo \pagepostvo
largecrownvopaper 8in x 5.25in \stocklargecrownvo \pagelargecrownvo
largepostvopaper 8.25in x 5.25in \stocklargepostvo \pagelargepostvo
smalldemyvopaper 8.5in x 5.675in \stocksmalldemyvo \pagesmalldemyvo
demyvopaper 8.75in x 5.675in \stockdemyvo \pagedemyvo
mediumvopaper 9in x 5.75in \stockmediumvo \pagemediumvo
smallroyalvopaper 9.25in x 6.175in \stocksmallroyalvo \pagesmallroyalvo
royalvopaper 10in x 6.25in \stockroyalvo \pageroyalvo
superroyalvopaper 10.25in x 6.75in \stocksuperroyalvo \pagesuperroyalvo
imperialvopaper 11in x 7.5in \stockimperialvo \pageimperialvo

There are two options that don’t really fit into the tables.

ebook for a stock size of 6 inches x 9 inches, principally for ‘electronic books” intended to be
displayed on a computer monitor

landscape to interchange the height and width of the stock.

All the options, except for landscape, are mutually exclusive. The default stock paper

size is letterpaper.

If you want to use a stock size that is not listed there are methods for doing this, which

will be described later.

1.2 TYPE SIZE OPTIONS

The type size option sets the default font size throughout the document. The class offers a
wider range of type sizes than usual. These are:

9pt for 9pt as the normal type size

10pt for 10pt as the normal type size

1.2. TYPE SIZE OPTIONS 3

11pt for 11pt as the normal type size
12pt for 12pt as the normal type size
14pt for 14pt as the normal type size!
17pt for 17pt as the normal type size
20pt for 20pt as the normal type size
25pt for 25pt as the normal type size
30pt for 30pt as the normal type size
36pt for 36pt as the normal type size
48pt for 48pt as the normal type size
60pt for 60pt as the normal type size
*pt for an author-defined size as the normal type size

extrafontsizes Using scalable fonts that can exceed 25pt.
Note that this includes \huge, \Huge and \HUGE under 14pt. For 17ptand up, an error is
thrown if used without extrafontsizes, no error is given for 14pt, there sizes above \LARGE
will just be unavailable unless extrafontsizes is used.

These options, except for extrafontsizes, are mutually exclusive. The default type size
is 10pt.

Options greater than 17pt or 20pt are of little use unless you are using scalable fonts —
the regular Computer Modern bitmap fonts only go up to 25pt. The option extrafontsizes
indicates that you will be using scalable fonts that can exceed 25pt. By default this option
makes Latin Modern in the T1 encoding as the default font (normally Computer Modern
in the 0T1 encoding is the default).

1.2.1 Extended font sizes

By default, if you use the extrafontsizes option the default font for the document is Latin
Modern in the T1 font encoding. This is like putting

\usepackage{lmodern}\usepackage[T1]{fontenc}

in the documents’s preamble (but with the extrafontsizes option you need not do this).

\newcommand*{\memfontfamily}{(fontfamily)}
\newcommand*{\memfontenc}{{fontencoding)}
\newcommand*{\memf ontpack}{(package)}

Internally the class uses \memfontfamily and \memfontenc as specifying the new font
and encoding, and uses \memfontpack as the name of the package to be used to imple-
ment the font. The internal definitions are:

\providecommand*{\memfontfamily}{lmr}
\providecommand*{\memfontenc}{T1}
\providecommand*{\memfontpack}{lmodern}

INote that for 14pt, \huge, \Huge and \HUGE will be the same as \LARGE, unless the extrafontsizes option
is also is activated.

4 CHAPTER 1. STARTING OFF

which result in the 1mr font (Latin Modern) in the T1 encoding as the default font, which
is implemented by the Imodern package. If you want a different default, say New Century
Schoolbook (which comes in the T1 encoding), then

\newcommand*{\memfontfamily}{pnc}
\newcommand*{\memfontpack}{newcent}
\documentclass[...]{memoir}

will do the trick, where the \newcommandx*s are put before the \documentclass declara-
tion (they will then override the \provide. . . definitions within the class code).

If you use the *pt option then you have to supply a clo file containing all the size
and space specifications for your chosen font size, and also tell memoir the name of the
file. Before the \documentclass command define two macros, \anyptfilebase and
\anyptsize like:

\newcommand*{\anyptfilebase}{(chars)}
\newcommand*{\anyptsize}{(num)}

When it comes time to get the font size and spacing information memoir will try and
input a file called \anyptfilebase\anyptsize.clo which you should have made avail-
able; the \anyptsize (num) must be an integer.” Internally, the class specifies

\providecommand*{\anyptfilebase}{mem}
\providecommand*{\anyptsize}{10}

which names the default as mem10. clo, which is for a 10pt font. If, for example, you have
an 18pt font you want to use, then

\newcommand*{\anyptfilebase}{myfont}
\newcommand*{\anyptsize}{18}
\documentclass[...*pt...]{memoir}

will cause LaTeX to try and input the myfont18. clo file that you should have provided.
Use one of the supplied clo files, such asmem10. clo or mem60. clo as an example of what
must be specified in your clo file.

1.3 PRINTING OPTIONS

This group of options includes:
twoside for when the document will be published with printing on both sides of the paper.

oneside for when the document will be published with only one side of each sheet being
printed on.

The twoside and oneside options are mutually exclusive.
onecolumn only one column of text on a page.

twocolumn two equal width columns of text on a page.
The onecolumn and twocolumn options are mutually exclusive.

openright each chapter will start on a recto page.

2If it is not an integer then TeX could get confused as to the name of the file — it normally expects there to be
only one period (.) in the name of a file.

1.4. OTHER OPTIONS 5

openleft each chapter will start on a verso page.
openany a chapter may start on either a recto or verso page.
The openright, openleft and openany options are mutually exclusive.
final for camera-ready copy of your labours.

draft this marks overfull lines with black bars and enables some change marking to be
shown. There may be other effects as well, particularly if some packages are used.
ms this tries to make the document look as though it was prepared on a typewriter. Some
publishers prefer to receive poor looking submissions.
The final, draft and ms options are mutually exclusive.

showtrims this option prints marks at the corners of the sheet so that you can see where the
stock must be trimmed to produce the final page size.

The defaults among the printing options are twoside, onecolumn, openright, and final.

1.4 OTHER OPTIONS

The remaining options are:
leqno equations will be numbered at the left (the default is to number them at the right).

flegn displayed math environments will be indented an amount \mathindent from the
left margin (the default is to center the environments).

openbib each part of a bibliography entry will start on a new line, with second and succeding
lines indented by \bibindent (the default is for an entry to run continuously with
no indentations).

article typesetting simulates the article class, but the \chapter command is not disabled,
basically \chapter will behave as if it was \section. Chapters do not start a new
page and chapter headings are typeset like a section heading. The numbering of
figures, etc., is continuous and not per chapter. However, a \part command still
puts its heading on a page by itself.

oldfontcommands makes the old, deprecated LaTeX version 2.09 font commands available. Warning
messages will be produced whenever an old font command is encountered.

fullptlayout disable point trunction of certain layout lengths, for example \textwidth. The de-
fault is to round these of to a whole number of points, this option disables this fea-
ture.

None of these options are defaulted.

1.5 REMARKS
Calling the class with no options is equivalent to:
\documentclass[letterpaper, 10pt,twoside,onecolumn,openright,final]{memoir}

The source file for this manual starts

\documentclass[letterpaper,10pt,extrafontsizes] {memoir}

6 CHAPTER 1. STARTING OFF

which is overkill as both letterpaper and 10pt are among the default options.

Actual typesetting only occurs within the document environment. The region of the
file between the \documentclass command and the start of the document environment
is called the preamble. This is where you ask for external packages and define your own
macros if you feel so inclined.

| \flushbottom \raggedbottom \

When the twoside or twocolumn option is selected then typesetting is done with
\flushbottom, otherwise it is done with \raggedbottom.

When \raggedbottomis in effect LaTeX makes little attempt to keep a constant height
for the typeblock; pages may run short.

When \flushbottom is in effect LaTeX ensures that the typeblock on each page is a
constant height, except when a page break is deliberately introduced when the page might
run short. In order to maintain a constant height it may stretch or shrink some vertical
spaces (e.g., between paragraphs, around headings or around floats or other inserts like
displayed maths). This may have a deleterious effect on the color of some pages.

If you get too many strung out pages with \flushbottom you may want to put
\raggedbottom in the preamble.

If you use the ebook option you may well also want to use the 12pt and oneside options.

Two

Laying out the page

Up until this chapter the headings pagestyle has been used; pagestyles are described in
§7.2. This, and later chapters, are typeset with the ruled pagestyle.

2.1 INTRODUCTION

The class provides a default page layout, in which the page size is the same as the stock
size and the typeblock is roughly in the middle of the page. This chapter describes the
commands provided by the class to help you produce your own page layout if the default
is inappropriate.

If you are happy with the default layout you may skip the rest of this chapter.

The pages of a book carry the text which is intended to educate, entertain and/or amuse
the reader. The page must be designed to serve the purposes of the author and to ease
the reader’s task in assimilating the author’s ideas. A good page design is one which the
general reader does not notice. If the reader is constantly noticing the page layout, even
unconsciously, it distracts from the purpose of the book. It is not the job of the designer to
shout, or even to murmur, ‘look at my work’.

There are three main parts to a page: the page itself, the typeblock, and the margins
separating the typeblock from the edges of the page. Of slightly lesser importance are
the running headers and footers, and possibly marginal notes. The art of page design is
obtaining a harmonious balance or rhythm between all these.

Although the form is different, the facilities described in this chapter are similar to
those provided by the geometry package [?].

Note, if your paper choice matches one of the class paper options, then you can skip
forward to §2.4 — The typeblock, as you have already chosen your stock size and
does not need trimming.

On the other hand, if, say, you are designing a document, that is to be printed on one type
of paper (the stock), and then trimmed to another, please read on.

2.2 STOCK MATERIAL

Printing is the act of laying symbols onto a piece of stock material. Some print on T-shirts
by a process called silk screening, where the shapes of the symbols are made in a screen
and then fluid is squeezed through the screen onto the stock material — in this case the

7

2. LAYING OUT THE PAGE

fabric of the T shirt. Whether or not this is of general interest it is not the sort of printing
or stock material that is normally used in book production. Books, except for the very
particular, are printed on paper.

In the desktop publishing world the stock paper is usually one from a range of standard
sizes. In the USA it is typically letterpaper (11 by 8.5 inches) and in the rest of the world A4
paper (297 by 210 mm), with one page per piece of stock. In commercial printing the stock
material is much larger with several pages being printed on each stock piece; the stock is
then folded, cut and trimmed to form the final pages for binding. The class assumes that
desktop publishing is the norm.

2.3 THE PAGE

The class assumes that there will be only a single page on a side of each piece of stock; two
sides means that there can be two pages, one on the front and the other on the back.

The parameters used by LaTeX itself to define the page layout are illustrated in Fig-
ure 2.1. LaTeX does not actually care about the physical size of a page — it assumes that,
with respect to the top lefthand corner, the sheet of paper to be printed is infinitely wide
and infinitely long. If you happen to have a typeblock that is too wide or too long for the
sheet, LaTeX will merrily position text outside the physical boundaries.

The LaTeX parameters are often not particularly convenient if, say, the top of the text
must be a certain distance below the top of the page and the fore-edge margin must be
twice the spine margin. It is obviously possible to calculate the necessary values for the
parameters, but it is not a pleasurable task.

The class provides various means of specifying the page layout, which are hopefully
more convenient to use than the standard ones. Various adjustable parameters are used
that define the stock size, page size, and so on. These differ in some respects from the
parameters in the standard classes, although the parameters for marginal notes are the
same in both cases. Figure 2.3 shows the main class layout parameters for a recto page.
These may be changed individually by \setlength or by using the commands described
below. Figure 2.2 illustrates the same parameters on a verso page.

The first step in designing the page layout is to decide on the page size and then pick an
appropriate stock size. Selecting a standard stock size will be cheaper than having to order
specially sized stock material.

| \setstocksize{(height) }H{ (width)} |

The class options provide for some common stock sizes. So if you have specified the class
option adpaper and intend to print on A4, then you have no need for \setstocksize,
proceed directly to §2.4. Alternatively, the class provide settings for many other standard
stock sizes, see Table 1.1 through Table 1.3.

If you have some other size that you want to use, the command \setstocksize canbe
used to specify that the stock size is (height) by (width). For example the following specifies
a stock of 9 by 4 inches:

\setstocksize{9in}{4in}

The size of the page must be no larger than the stock but may be smaller which means
that after printing the stock must be trimmed down to the size of the page. The page may
be positioned anywhere within the bounds of the stock.

8

2.3. The page

The circle is at 1 inch from the top and left of the page. Dashed lines represent (\hoffset + 1
inch) and (\voffset + 1 inch) from the top and left of the page.

Figure 2.1: LaTeX page layout parameters for a recto page

|
|
|
C O G T T T T T T T T T T T oo !
: \headheight [{eader
| \headsep
|
|
|
|
|
|
| \¢ddsidemargin
I—D
|
|
: B
od .
[Y Margin
[Note
! \textwidth
| N
I i \marginparpush
|
I \arginpprsep
I]
I \marginparwidth
I \textheight
I Y
I \footskip
|
| Footer
|
|
|
|
|
|
1

2. LAYING OUT THE PAGE

Dashed lines represent the actual page size after trimming the stock.

\trimtop t\g

r - = - == == . - - "= =-""-=-"=-"=-"="==-= =, AT\ .

\uppermargin \paperhei
| |
| |
| |
| |
. § - |
\#rlmedge | | \headheight{{eader |
| \headsep |
| ! |
| |
| |
| |
| |
| |

I \spinelmargin
| !
| |
| |
! Bod !
:Margin y :
| Note |
| \textwidth |
I i \margznparpush I
| |
| . |
| \arginparsep |

I| \margiinparwidth
: \textheight :
Y
| \footskip I
| |
I | Footer I
| \paperwidth |
L >
L e e e e e e e e e e e e e e - Y 3
\stockwidth
Y

tockheight
ght

Figure 2.2: The memoir class page layout parameters for a verso (left hand) page

10

2.3. The page

Dashed lines represent the actual page size after trimming the stock.

t \stockheight \trimtop
e e e e e e e e M- Y _ _
i \paperheight \uppermargin
| |
| |
| |
| |
| } : | .
| | \headheight{{eader | \tYrimedge
| \headsep |
| ' |
| |
| |
| |
| |
| |
I \spinemargin I
I |
| |
|]
! Bod !
: y Margin :
| Note |
| \textwidth
I - g i \marginparpush
| |
: \marginp%rsep
]
| \marglinpgrwidth
: \textheight ;
Y
| \footskip |
| |
| Footer |
| \paperwidth |
L J
L U J
\stockwidth

Figure 2.3: The memoir class page layout parameters for a recto (right hand) page

11

2. LAYING OUT THE PAGE

Table 2.1: Arguments and results for \settrimmedsize and \settypeblocksize

(height) (width) (ratio) Result

H W T ambiguous
H W * H,W

H * r W =rH
H * * ambiguous
* W r H=rWw

* W * ambiguous
* * T ambiguous
* * * ambiguous

Page layout should be conceived in terms of a double spread; when you open a book
in the middle what you see is a double spread — a verso page on the left and a recto page
on the right with the spine between them. Most books when closed are taller than they
are wide; this makes them easier to hold when open for reading. A squarish page when
opened out into a wide spread makes for discomfort unless the book is supported on a
table.

| \settrimmedsize{(height)}{(width)}{(ratio)} \

Initially the page size is made the same as the stock size, as set by the paper size option. The
command \settrimmedsize can be used to specify the height and width of the page (af-
ter any trimming). The (ratio) argument is the amount by which the (height) or the (width)
must be multiplied by to give the width or the height. Only two out of the three possible
arguments must be given values with the other (unvalued) argument given as * (an aster-
isk). The lengths \paperheight and \paperwidth are calculated according to the given
arguments. That is, the command enables the \paperheight and \paperwidth to be
specified directly or as one being in a given ratio to the other. The potential combinations
of arguments and the corresponding results are listed in Table 2.1.

If you have used \setstocksize to redefine the stock, then to get the same page size,
do:

\settrimmedsize{\stockheight}{\stockwidth}{*}

or for the page dimensions to be 90% of the stock dimensions:
\settrimmedsize{0.9\stockheight}{0.9\stockwidth}{*}

The following are three different ways of defining an 8 by 5 inch page.

\settrimmedsize{8in}{5in}{*}
\settrimmedsize{8in}{*}{0.625} % 5 0.625 times 8
\settrimmedsize{*}{5in}{1.6} % 8 = 1.6 times 5

If you look at a well bound hardback book you can see that the sheets are folded so that
they are continuous at the spine, where they are sewn together into the binding. The top
of the pages should be smooth so that when the book is upright on a bookshelf dust has
a harder job seeping between the pages than if the top was all raggedy. Thus, if the stock
is trimmed it will be trimmed at the top. It will also have been cut at the fore-edges of the
pages and at the bottom, otherwise the book would be unopenable and unreadable.

12

2.4. The typeblock

| \settrims{(top)}{{foredge)} ‘

The command \settrims can be used to specify the amount intended to be removed from
the top ({top)) and fore-edge ((foredge)) of the stock material to produce the top and fore-
edge of a recto page. Note that the combination of \settrims and \settrimmedsize
locate the page with respect to the stock. By default the top and edge trims are zero, which
means that if any trimming is required it will be at the spine and bottom edges of the stock
unless \settrims is used to alter this.

You can either do any trim calculation for youself or let LaTeX do it for you. For exam-
ple, with an 8in by 5in page on 10in by 7in stock

\settrims{2in}{2in}

specifies trimming 2in from the top and fore-edge of the stock giving the desired page size.
Taking a design where, say, the page is 90% of the stock size it’s easy to get LaTeX to do
the calculation:

\setlength{\trimtop}{\stockheight} % \trimtop = \stockheight

\addtolength{\trimtop}{-\paperheight} % - \paperheight
\setlength{\trimedge}{\stockwidth} % \trimedge = \stockwidth
\addtolength{\trimedge}{-\paperwidth} % - \paperwidth

which will set all the trimming to be at the top and fore-edge. If you wanted, say, equal
trims at the top and bottom you could go on and specify

\settrims{0.5\trimtop}{\trimedge}

See also §2.12 — Place trimmed page on the stock, where we present some extra commands.
For example \setpagecc for placing a trimmed page centered on the stock.

After trimming the various methods to specify the typeblock, now refers to the trimmed
page, not the stock material.

2.4 THE TYPEBLOCK

Like the page, the typeblock is normally rectangular with the height greater than the width.
The lines of text must be laid out so that they are easy to read. Common practice, and
more recently psychological testing, has shown that long lines of text are difficult to read.
Thus, there is a physiological upper limit to the width of the typeblock. From a practical
viewpoint, a line should not be too short because then there is difficulty in justifying the
text.

2.4.1 A note on the width of the typeblock

Experiments have shown that the number of characters in a line of single column text on a
page should be in the range 60 to 70 for ease of reading. The range may be as much as 45
to 75 characters but 66 characters is often considered to be the ideal number. Much shorter
and the eye is dashing back and forth between each line. Much longer and it is hard to
pick up the start of the next line if the eye has to jump back too far — the same line may
be read twice or the following line may be inadvertently jumped over. For double column
text the ideal number of characters is around 45, give or take 5 or so.

Bringhurst [?] gives a method for determining the number of characters in a line for
any font: measure the length of the lowercase alphabet and use a copyfitting table that

13

2. LAYING OUT THE PAGE

Table 2.2: Average characters per line

Pts. Line length in picas
10 14 18 22 26 30 35 40

80 40 56 72 88 104

85 38 53 68 83 98 113

90 36 50 64 79 86 107

95 34 48 62 75 89 103

100 33 46 59 73 8 99 116

105 32 44 57 70 8 95 111

110 30 43 55 67 79 92 107

115 29 41 53 64 76 88 103

120 28 39 50 62 73 84 98 112
125 27 38 48 59 70 81 94 108
130 26 36 47 57 67 78 91 104
135 25 35 45 55 65 75 88 100
140 24 34 44 53 63 73 8 97
145 23 33 42 51 61 70 82 94
150 23 32 41 51 60 69 81 92
155 22 31 39 49 58 67 79 90
160 22 30 39 48 56 65 76 87
165 21 30 38 46 55 63 74 84
170 21 29 37 45 53 62 72 82
175 20 28 36 44 52 60 70 80
180 20 27 35 43 51 59 68 78
185 19 27 34 42 49 57 67 76
190 19 26 33 41 48 56 65 74
195 18 25 32 40 47 54 63 72
200 18 25 32 39 46 53 62 70
220 16 22 29 35 41 48 56 64
240 15 20 26 32 38 44 51 58
260 14 19 24 30 35 41 48 54
280 13 18 23 28 33 38 44 50
300 12 17 21 26 31 35 41 47
320 1 16 20 25 29 34 39 45
340 10 15 19 23 27 32 37 42

shows for a given alphabet length and line length, the average number of characters in
that line. Table 2.2 is an abridged version of Bringhurt’s copyfitting table. For example, it
suggests that a font with a length of 130pt should be set on a measure of about 26pc for a

single column or in an 18pc wide column if there are multiple columns.

Morten Hogholm has done some curve fitting to the data. He determined that the

expressions

14

2.4. The typeblock

and
Lys = 1.415a + 23.03 (2.2)

fitted aspects of the data, where « is the length of the alphabet in points, and L; is the
suggested width in points, for a line with ¢ characters (remember that 1pc = 12pt).

Table 2.3 gives the lowercase alphabet lengths for some typefaces over a range of font
sizes; this may be used in conjunction with Table 2.2 on page 14 when deciding on an
appropriate textwidth. I have grouped the listed typefaces into roman, sans-serif, and
monospaced, and they are all available in a standard LaTeX system. The Computer Mod-
ern Roman, Concrete Roman, Computer Sans, and Typewriter typefaces were all designed
by Donald Knuth using Metafont, specifically for use with TeX. The other font families are
PostScript outline fonts and can be used in many document publishing systems. These par-
ticular fonts are available for use in LaTeX via the packages in the psnfss bundle. Be aware
that the Knuthian fonts were designed to form a font family — that is, they were designed
to work together and complement each other — while the listed PostScript fonts were de-
signed by different people at different times and for different purposes. Bringhurst [?, p.
96] memorably says ‘Baskerville, Helvetica, Palatino and Times Roman, for example —
which are four of the most widely available typefaces — are four faces with nothing to
offer one another except public disagreement’.

The monospaced fonts, Courier and Typewriter have no place in high quality typeset-
ting except when typesetting computer code or the like, or when trying to fake text written
on a real typewriter. Ignoring these, a quick glance at the Table shows that Bookman is a
broad font while Times is narrow as befits its original design intent for typesetting narrow
columns in newspapers. Computer Modern tends towards the narrow end of the range.

| \xlvchars \1xvchars \

Based on Table 2.3, the two lengths \x1vchars and \1xvchars are initially set to approx-
imately the lengths of a line of text with 45 or 65 characters, respectively, for Computer
Modern Roman in the type size selected for the document.

If you are using a different font or size you can use something like the following to
calculate and print out the length for you.

\newlength{\mylen} % a length
\newcommand{\alphabet}{abc...xyz} ¥ the lowercase alphabet
\begingroup % keep font change local

% font specification e.g., \Large\sffamily
\settowidth{\mylen}{\alphabet}
The length of this alphabet is \the\mylen. % print in document
\typeout{The length of the Large sans alphabet

is \the\mylen} % put in log file
\endgroup % end the grouping

The \typeout macro prints its argument to the terminal and the log file. There is, however,
an easier method.

\setxlvchars [(fontspec)]
\setlxvchars [(fontspec)]

The macros \setxlvchars and \setlxvchars, which were suggested by Morten
Hogholm, set the lengths \x1vchars and \1xvchars respecively for the font (fontspec).

15

2. LAYING OUT THE PAGE

Table 2.3: Lowercase alphabet lengths, in points, for various fonts

8pt 9pt 10pt 1lpt 12pt 14pt 17pt 20pt

Bookman 113 127 142 155 170 204 245 294
Charter 102 115 127 139 152 184 221 264
Computer Modern 108 118 127 139 149 180 202 242
Concrete Roman 109 119 128 140 154 185 222 266
New Century Schoolbook 108 122 136 149 162 194 234 281
Palatino 107 120 133 146 160 192 230 276
Times Roman 9% 108 120 131 143 172 206 247
Utopia 107 120 134 146 161 193 232 277
Avant Garde Gothic 113 127 142 155 169 203 243 293
Computer Sans 102 110 120 131 140 168 193 233
Helvetica 102 114 127 139 152 184 220 264
Courier 125 140 156 170 187 224 270 324
Typewriter 110 122 137 149 161 192 232 277

The default for (fontspec) is \normalfont. For example, the values of \1xvchars and
\x1lvchars after calling:

\setlxvchars \setxlvchars[\small\sffamily]

are: \lxvchars = 305.42249pt, and \x1lvchars = 190.52705pt.
Morten Hogholm! also commented:

...I was defining some environments that had to have \parindent as
their indentation. For some reason I just wrote 1.5em instead of \parindent
because I ‘knew’ that was the value. What I had overlooked was that I
had loaded the mathpazo package [?], thus, among other things, altering
\parindent. Conclusion: the environment would use 1.5em = 18.0pt, whereas
the \parindent was only 17.607pt.

This, and other related situations can be avoided if one places

\RequirePackage{(font-package)}\normalfont
before \documentclass.
Note that, in general, it is inadviseable to put any commands before \documentclass.

2.4.2 Specifying the typeblock size

The height of the typeblock should be equivalent to an integral number of lines. The
class provides two different methods to specify the typeblock. \settypeblocksize (be-
low) will set the size of the typeblock, other commands will then be used to place it on
the paper. Alternatively the typeblock size can be determined by setting the margins
around it. We present this later on in this section (see \setlrmarginsandblock and
\setulmarginsandblock).

| \settypeblocksize{(height)}{(width)}{(ratio)} \

1Private communication

16

2.4. The typeblock

The command \settypeblocksize is similar to \settrimmedsize except that it sets
the \textheight and \textwidth for the typeblock. The potential combinations of ar-
guments and the corresponding results are listed in Table 2.1 on page 12. For instance, here
are three ways of specifying a 6in by 3in typeblock:

\settypeblocksize{6in}{3in}{*}
\settypeblocksize{6in}{*}{0.5}
\settypeblocksize{*}{3in}{2}

The typeblock has to be located on the page. There is a relationship between the page,
typeblock and margins. The sum of the spine, or inner, margin, the fore-edge, or outer,
margin and the width of the typeblock must equal the width of the page. Similarly the
sum of the upper margin, the lower margin and the height of the typeblock must equal
the height of the page. The process of locating the typeblock with respect to the page can
be viewed either as positioning the typeblock with respect to the edges of the page or as
setting the margins between the page and the typeblock.

Remembering that the page layout should be defined in terms of the appearance as a
spread, the spine margin is normally half the fore-edge margin, so that the white space is
equally distributed around the sides of the text.

Note. One will often find that using \settypeblocksize without subsequent use of
\setlrmargins and \setulmargins will result in errors as the relationships mentioned above
are not met (the \textwidth has changed, but not the margins).

We may add auto adjustments to a future version of memoir.

There is more latitude in choosing the proportions of the upper and lower margins,
though usually the upper margin is less than the lower margin so the typeblock is not
vertically centered.

Two methods are provided for setting the horizontal dimensions on a page. One is
where the width of the typeblock is fixed and the margins are adjustable. The other method
is where the size of the margins determines the width of the typeblock.

| \setlrmargins{(spine)}{{edge)}{{ratio)} \

The command \setlrmargins can be used to specify the side margins® with the width of
the page and the typeblock being fixed.

Not more than one one argument value is required, with any unvalued arguments
being denoted by an asterisk. There are several cases to consider and these are tabulated
in Table 2.4.

In the Table, S is the calculated spine margin, E is the calculated fore-edge margin,
and P, and B,, are respectively the page and typeblock widths. The \setlrmargins
command maintains the relationship

S+ E = K,, = constant (= P, — B,,).

The cases marked ambiguous in the Table are where the particular combination of ar-
gument values may make it impossible to guarantee the relationship.

Assuming that we have a 3in wide typeblock on a 5in wide page and we want the
spine margin to be 0.8in and the fore-edge margin to be 1.2in (i.e., the fore-edge margin

2Only the spine margin is noted in Figure 2.3 and 2.2; the fore-edge margin is at the opposite side of the
typeblock.

17

2. LAYING OUT THE PAGE

Table 2.4: Arguments and results for \setlrmargins

(spine) (edge) (ratio) Result

S E r ambiguous

S E * ambiguous

S * r ambiguous

S * * E=K,-S8

* E r ambiguous

* E * S=K,—F

* * r E+S=K,E=rS
* *

* E+S=K, E=S

Table 2.5: Arguments and results for \setlrmarginsandblock

(spine) (edge) (ratio) Result
r S, E

7

It

rS

S

rk

E

r ambiguous
ambiguous

* % % x N WL ULLW
¥ » Mt o+ x 1M
*
e ®n
Il

is half as big again as the spine margin) this can be accomplished in three ways (with the
\paperwidth and \textwidth being previously specified and fixed):
% specify spine margin
\setlrmargins{0.8in}{*}{*}
% specify fore-edge margin
\setlrmargins{*}{1.2in}{*}
% specify fore-edge/spine ratio
\setlrmargins{*}{*}{1.5}

| \setlrmarginsandblock{(spine)}{(edge)}{(ratio)} \

The command \setlrmarginsandblock can be used to specify the spine and fore-edge
margins, where the page width is fixed and the width of the typeblock depends on the
margins. Results for this command are given in Table 2.5. The same notation is used, but
in this case \setlrmarginsandblock maintains the relationship

S+ By, + E = constant (= P,,).

The width of the typeblock is calculated from B,, = P, — S — E.

Assuming that we want a 3in wide typeblock on a 5in wide page and we want the
spine margin to be 0.8in and the fore-edge margin to be 1.2in (i.e., the fore-edge margin
is half as big again as the spine margin) this can be accomplished in the following ways

18

2.4. The typeblock

(with the \textwidth being calculated from the previously specified \paperwidth and
the specified margins):

% specify both margins
\setlrmarginsandblock{0.8in}{1.2in}{*}

% specify spine & fore-edge/spine ratio
\setlrmarginsandblock{0.8in}{*}{1.5}

% specify fore-edge & spine/fore-edge ratio
\setlrmarginsandblock{*}{1.2in}{0.667}

If we wanted the margins to be both 1in instead then any of the following will do it:

% specify both margins
\setlrmarginsandblock{1lin}{1in}{*}

% specify spine & fore-edge/spine ratio
\setlrmarginsandblock{1lin}{*}{1}

% specify spine (fore-edge = spine)
\setlrmarginsandblock{1in}{*}{*}

% specify fore-edge & spine/fore-edge ratio
\setlrmarginsandblock{*}{1in}{1}

% specify fore-edge (spine = fore-edge)
\setlrmarginsandblock{*}{1in}{*}

| \setbinding{(length)} |

In some cases, for example when doing a Japanese stab binding, it may be desireable to
add a small allowance to the spine margin for the binding. You can use the command
\setbinding for this purpose. It decreases the effective page width by (length) and later
this length will be added on to the spine margin, thus restoring the page width to its
original value. If you use \setbinding than it must be after setting the page width and
before setting the spine and fore-edge margins.

That completes the methods for specifying the horizontal spacings. There are similar
commands for setting the vertical spacings which are described below.

| \setulmargins{(upper)}{(lower)}{(ratio)} \

The command \setulmargins can be used to specify the upper and lower mar-
gins® where the heights of the page and the typeblock are fixed. This is similar to
\setlrmargins. Using a slightly different notation this time, with U being the upper
margin, L being the lower margin, and P, and B}, being the height of the page and type-
block, respectively, the results are shown in Table 2.6. The \setulmargins command
maintains the relationship

U + L = K}, = constant (= P, — By,).

Note that in terms of the traditional LaTeX parameters memoir’s \uppermargin is
(\topmargin + \headheight + \headsep).

| \setulmarginsandblock{(upper)}{(lower)}{(ratio)} \

30nly the upper margin is noted in Figure 2.3 and 2.2; the lower margin is the distance between the bottom
of the typeblock and the bottom of the page.

19

2. LAYING OUT THE PAGE

Table 2.6: Arguments and results for \setulmargins

(upper) (lower) (ratio) Result

U L r ambiguous

U L * ambiguous

U * r ambiguous

U * * L=K,-U

* L r ambiguous

* L * U=K,-L

* * r L+U=K, L=rU
* * * L+U=K, L=U

Table 2.7: Arguments and results for \setulmarginsandblock

(upper) (lower) (ratio) Result

U L r U, L

8] L * U,

U * r L=rU

U * * L=U

* L r U=rL

* L * U=L

* * r ambiguous
* * * ambiguous

The command \setulmarginsandblock can be used to specify the upper and lower mar-
gins, where the page height is fixed and the height of the typeblock depends on the mar-
gins. Results for this command are given in Table 2.7. The same notation is used, but in
this case \setulmarginsandblock maintains the relationship

U + Bp, + L = constant (F,).

The height of the typeblock is calculated from B, = P, — U — L.
Note. Readers may find several folio designs in [?].

See also §2.11 (Predefined layouts) for some predefined layouts.
This completes the methods for specifying the layout of the main elements of the page
— the page size, the size of the typeblock and the margins surrounding the typeblock.

2.5 HEADERS, FOOTERS AND MARGINAL NOTES

A page may have two additional items, and usually has at least one of these. They are the
running header and running footer. If the page has a folio then it is located either in the
header or in the footer. The word ‘in’ is used rather lightly here as the folio may not be
actually in the header or footer but is always located at some constant relative position. A
common position for the folio is towards the fore-edge of the page, either in the header or
the footer. This makes it easy to spot when thumbing through the book. It may be placed

20

2.5. Headers, footers and marginal notes

Table 2.8: Arguments and results for \setheaderspaces

(headdrop) (headsep) (ratio) Result

D H, r ambiguous

D H, * ambiguous

D * r ambiguous

D * * Hy=C,—-D

* H, r ambiguous

* H, * D=Cy— H,

* * r H,+D=Cy Hy=1D
* *

* H+D=Cy,H,=D

at the center of the footer, but unless you want to really annoy the reader do not place it
near the spine.

Often a page header contains the current chapter title, with perhaps a section title on
the opposite header, as aids to the reader in navigating around the book. Some books put
the book title into one of the headers, usually the verso one, but I see little point in that as
presumably the reader knows which particular book he is reading, and the space would
be better used providing more useful signposts.

| \setheadfoot{(headheight)}{(footskip)} \

The \setheadfoot macro sets the \headheight parameter to the value (headheight) and
the \footskip parameter to (footskip). It is usual to set the \headheight to at least the
value of the \baselineskip of the normal body font.

| \setheaderspaces{(headdrop) }{(headsep)}{(ratio)} \

The command \setheaderspaces is similar to \setulmargins. Using the notation U
for the upper margin (as before), Hj, for the \headheight, H; for the \headsep and D for
the \headdrop, where the \headdrop is the distance between the top of the trimmed page
and the top of the header?, then the macro \setheaderspaces maintains the relationship

D+ H, = Cj, = constant (= U — Hy,).

The macro \setheaderspaces is for specifying the spacing above and below the
page header. The possible arguments and results are shown in Table 2.8. Typically, the
\headsep is of more interest than the \headdrop.

Finally, some works have marginal notes. These really come last in the design scheme,
providing the margins have been made big enough to accomodate them. Figure 2.2 shows
the marginal note parameters on a verso page, and also illustrates that some parameters
control different positions on the stock.

| \setmarginnotes{(separation) }{(width) }{{push)} \

The command \setmarginnotes sets the parameters for marginal notes. The distance
\marginparsep between the typeblock and any note is set to (separation), the maximum
width for a note, \marginparwidth, is set to (width) and the minimum vertical distance
between notes, \marginparpush, is set to (push).

4The head drop is not shown in Figure 2.3 or 2.2.

21

2. LAYING OUT THE PAGE

Note. As of memoir v3.6k, we have added an auto adjustment feature for \marginparwidth,
such that unless \setmarginnotes have been used to make a specific choice, the
\marginparwidth is chosen according to the algorithm described in §G.1.1. The algorithm relies
on \marginparmargin (if used) being set before \checkandfixthelayout.

We may add other auto adjusting features to future memoir releases.

2.6 OTHER

| \setcolsepandrule{(colsep)}{(thickness)} \

For twocolumn text the width of the gutter between the columns must be specified.
LaTeX also lets you draw a vertical rule in the middle of the gutter. The macro
\setcolsepandrule sets the gutter width, \columnsep, to (colsep) and the thickness
of the rule, \columnseprule, to (thickness). A (thickness) of Opt means that the rule will
be invisible. Visible rules usually have a thickness of about 0.4pt. The total width of the
twocolumns of text and the gutter equals the width of the typeblock.

| \setfootins{(length for normal)}{(length for minipage)} \

When footnotes are added to the text block they are added \skip\footins below the text.
Since this is a skip it usually needs special syntax to change it. Instead we have provided
an interface to set it.” The default sizes are \bigskipamount.

2.7 PUTTING IT TOGETHER

The page layout parameters just discussed are not always the same as those that are ex-
pected by LaTeX, or by LaTeX packages. The parameters that LaTeX expects are shown in
Figure 2.1. You can either use the class commands for changing the page layout or change
the LaTeX parameters directly using either \setlength or \addtolength applied to the
parameter(s) to be modified. If you choose the latter route, those class parameters which
differ from the standard LaTeX parameters will not be modified.

The general process of setting up your own page layout is along these lines:

* Decide on the required finished page size, and pick a stock size that is at least as large

as the page.

e If needed, use \setstocksize to set the values of \stockheight and
\stockwidth, followed by \settrimmedsize to specify the values of
\paperheight and \paperwidth.

If you use and print on, say, A4, the adpaper class option is enough, no
\setstocksize needed.

* Decide on the location of the page with respect to the stock. If the page and stock
sizes are the same, then call \settrims{Opt}{Opt}. If they are not the same size
then decide on the appropriate values for \trimtop and \trimedge to position the
page on the stock, and then set these through \settrims.

5This interface also sets the equivalent lengths used when \twocolumnfootnotes and friends are being
used.

22

2.7. Putting it together

* Decide on the size of the typeblock and use \settypeblocksize to specify the val-
ues of \textheight and \textwidth.

¢ If you need a binding allowance, now is the time for \setbinding.

* Pick the value for the spine margin, and use \setlrmargins to set the values for
the \spinemargin and \foremargin.
An alternative sequence is to use \setlrmarginsandblock to set the \textwidth
for a particular choice of side margins.

* Pick the value for the upper margin and use \setulmargins to set the values for
the \uppermargin and \lowermargin.
An alternative sequence is to use \setulmarginsandblock to set the \textheight
for a particular choice of upper and lower margins.
The typeblock is now located on the page.

e Pick the values for the \headheight and \footskip and use \setheadfoot to
specify these.

¢ Pick your value for \headskip and use \setheaderspaces to set this and
\headmargin.

e If you are going to have any marginal notes, use \setmarginnotes to specify the

values for \marginparsep, \marginparwidth and \marginparpush.

You can plan and specify your layout in any order that is convenient to you. Each of
the page layout commands is independent of the others; also if a value is set at one point,
say the \textwidth, and is then later changed in some way, only the last of the settings is
used as the actual value.

Comparing Figures 2.3 and 2.1 you can see the different layout parameters provided
by the class and used by standard LaTeX. For convenience, and because the figures do not
show all the parameters, the two sets of parameters are listed in Table 2.9.

Unless you are satisfied with the default page layout, after specifying the layout that
you want you have to call the \checkandfixthelayout command to finally implement
your specification.

\checkandfixthelayout [(algorithm)]
\checkthelayout [{(algorithm)]
\fixthelayout

\baselineskip \topskip

The \checkandfixthelayout macro uses \checkthelayout to check the page lay-
out specification you have given, and then calls \fixthelayout to finally implement it.

The \checkthelayout macro checks the class layout parameters to see whether they
have ‘sensible’ values (e.g., the \textwidth is not negative) and, depending on the
(algorithm) argument, it may modify the \textheight. It does not actually implement
the layout.

When using \flushbottom LaTeX expects that the \textheight is such that an in-
tegral number of text lines in the body font will fit exactly into the height. If not, then
it issues “underfull vbox” messages. More precisely, if b is the \baselineskip and ¢
is the \topskip, N is an integer (the number of lines in the typeblock), and T is the
\textheight then to avoid underfull vboxes the following relationship must hold

T=(N-1)b+t (2.3)

23

2. LAYING OUT THE PAGE

Table 2.9: The class and LaTeX page layout parameters

Class LaTeX
\stockheight
\trimtop
\trimedge
\stockwidth
\paperheight \paperheight
\paperwidth \paperwidth
\textheight \textheight
\textwidth \textwidth
\columnsep \columnsep
\columnseprule \columnseprule
\spinemargin
\foremargin

\oddsidemargin

\evensidemargin
\uppermargin
\headmargin

\topmargin
\headheight \headheight
\headsep \headsep
\footskip \footskip
\marginparsep \marginparsep
\marginparwidth \marginparwidth
\marginparpush \marginparpush

By default \checkthelayout ensures that the final \textheight meets this criterion.
The optional (algorithm) argument lets you control just how it does this. In the following H
is your requested value for the \textheight and the other symbols are as before, with T
as the adjusted value, and using integer arithmetic.® The permissible values for (algorithm)
are:
fixed The \textheight is not altered.
T=H (2.4)

If you use this option you may find that underfull vboxes are reported for
\flushbottom pages.

classic This is the default and is the one used by the standard classes.
T=0blH/b|+1 (2.5)

The relationship (2.3) is maintained. This algorithm gets as close to H as possible
from below.

%In this context ‘integer arithmetic’ means that the result of a division will be rounded down. For example
99/10 in ‘real arithmetic’ results in 9.9, whereas with integer arithmetic the result is 9, not 10.

24

2.7. Putting it together

Table 2.10: Results from sample \textheight adjustments

Algorithm

fixed classic lines nearest

Requested height adjusted height in pts, (lines)

10.0\baselineskip 120.0pt, (10) 130pt, (11) 118pt, (10) 118pt, (10)
10.2\baselineskip 1224pt, (10) 130pt, (11) 118pt, (10) 118pt, (10)
10.4\baselineskip 124.8pt, (10) 130pt, (11) 118pt, (10) 130pt, (11)
10.6\baselineskip 127.2pt, (10) 130pt, (11) 118pt, (10) 130pt, (11)
))
))

10.8\baselineskip 129.6pt, (10) 130pt, (11) 118pt, (10) 130pt, (11
11.0\baselineskip 132.0pt, (11) 142pt, (12) 130pt, (11) 130pt, (11

lines This is similar to classic, but results in a smaller final value.
T=>bl(H-b)/b]+t (2.6)

The relationship (2.3) is maintained.

nearest The calculated value is the nearest to the given value while still maintaining the
relationship (2.3).
T=0bl(H—-t+b/2)/b] +t (2.7)

In contrast to classic, nearest will get as close to H as possible even if this means
that 7" ends up being slightly larger than H.

Table 2.10 shows the results from the various \textheight adjustment calculations’
where the \baselineskip is 12pt and the \topskip is 10pt, which are the normal values
for a Computer Modern 10pt font. In all cases the fixed algorithm resulted in underfull
vboxes. If you know the number of lines that you want, say 42, then requesting

%% setting equivalent to \setlength{\textheight}{42\baselineskip}
\checkandfixthelayout [lines]

will result in the most appropriate \textheight.
If you use the calc package you can use constructs like the following in a page layout
specification:
\setlength{\textheight}{41\baselineskip + \topskip}
\settypeblocksize{41\baselineskip + \topskip}{33pc}{*}

The \fixthelayout macro finally implements the layout, making due adjustement
for any binding allowance, and calculates the values for all the standard LaTeX layout
parameters (such that packages can use these expected values). If you have used the class
macros to change the layout in any way, you must call \checkandfixthelayout after
you have made all the necessary changes. As an aid, the final layout parameter values are
displayed on the terminal and written out to the log file.

At the beginning of the document we will automatically add the page/stock sizes etc
to the output such that viewers etc reacts accordingly. In incase you need to manually have
the class rewrite these sizes to the document, you can use

7For comparison the optimum heights from equation 2.3 for 10, 11 and 12 lines are respectively 118pt, 130pt
and 142pt.

25

2. LAYING OUT THE PAGE

[\refixpagelayout

Please note that this macro (and its name), may change in the future.®

\typeoutlayout
\typeoutstandardlayout
\settypeoutlayoutunit{(unit)}

\typeoutlayout writes the current class layout parameter values to the terminal and the
log file. It is called by \checkandfixthelayout but you can use it yourself at any time.
The macro \typeoutstandardlayout writes the standard layout parameter values to the
terminal and log file so that you can compare the two sets of parameter values.

By using the macro \settypeoutlayoutunit, the user can change the unit in which
the layout list is shown. Very handy when designing in, say, centimeters. Supported units
are pt, pc, mm, cm, in, bp, dd and cc, default being pt, see Table 2 for more information
about the units.

2.8 SIDE MARGINS

In twoside printing the spine margin is normally the same on both recto and verso pages
and, unless the spine and fore-edge margins are the same, the typeblock is shifted side to
side when printing the recto and verso pages. Additionally you can have different headers
and footers for the recto and verso pages. However, in oneside printing the typeblock is
not moved and the headers and footers are the same for both odd and even pages.

Some documents are designed to have, say, a very wide righthand margin in which to
put illustrations; this leads to needing the spine margin on verso pages to be much larger
than the spine margin on recto pages. This can be done with the oneside option. However,
different headers and footers are required for the recto and verso pages, which can only be
done with the twoside option. The way to get the desired effects is like this (twoside is the
default class option):

\documentclass{memoir}

%kt set up the recto page layout

\checkandfixthelayout or perhaps \checkandfixthelayout[lines]
\setlength{\evensidemargin}{\oddsidemargin}}, after \checkandfix...

2.9 EMITTING THE PAGE SIZE

At the start of the document the class will automatically emit the chosen stocksize to the
output format (DVI or PDF).’

8In a comming version, we will hopefully be able to support changing the stock and layout mid document,
like what is provided by the geometry. But it is currently not being prioritised.

9In earlier versions we had macros \fixpdflayout and \fixdvipslayout that held some of the code
needed to emit this data. With the newer engines like LuaLaTeX, this became unfeasible thus they we discontin-
ued (their use now emit a warning).

26

2.10. Example

2.10 EXAMPLE

Suppose you want a page that will fit on both A4 and US letterpaper stock, wanting to do
the least amount of trimming. The layout requirements are as follows.

¢ The width of the typeblock should be such that there are the optimum number of
characters per line.

¢ The ratio of the height to the width of the typeblock should equal the golden section.

e The text has to start 50pt below the top of the page. We will use the default
\headheight and \footskip.

¢ The ratio of the outer margin to the inner margin should equal the golden section, as
should the space above and below the header.

¢ There is no interest at all in marginal notes, so we can ignore any settings for these.

We can either do the maths ourselves or get LaTeX to do it for us. Let’s use LaTeX. First we
will work out the size of the largest sheet that can be cut from A4 and letterpaper, whose
sizes are 297 mm x 210mm and 11in x 8.5in; A4 is taller and narrower than letterpaper.

\settrimmedsize{11in}{210mm}{*}

The stocksize is defined by the class option, which could be either letterpaper or a4paper,
but we have to work out the trims to reduce the stock to the page. To make life easier,
we will only trim the fore-edge and the bottom of the stock, so the \trimtop is zero. The
\trimtop and \trimedge are easily specified by

\setlength{\trimtop}{Opt}
\setlength{\trimedge}{\stockwidth}
\addtolength{\trimedge}{-\paperwidth}

Or if you are using the calc package, perhaps:
\settrims{Opt}{\stockwidth - \paperwidth}

Specification of the size of the typeblock is also easy
\settypeblocksize{*}{\1lxvchars}{1.618}

and now the upper and lower margins are specified by
\setulmargins{50pt}{*}{*}

The spine and fore-edge margins are specified just by the value of the golden section, via
\setlrmargins{*}{*}{1.618%

The only remaining calculation to be done is the \headmargin and \headsep. Again this
just involves using a ratio

\setheaderspaces{*}{*}{1.618}
To finish off we have to make sure that the layout is changed
\checkandfixthelayout

2.10.1 The page layout of this manual
The page layout for this manual is defined in the preamble as:

\settrimmedsize{11in}{210mm}{*}
\setlength{\trimtop}{Opt}

27

2. LAYING OUT THE PAGE

Dashed lines represent the actual page size after trimming the stock.

|
|
|
|
Header I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Body '
|
|
Margin I
|
|
|
|
|
|
|
Note [
|
|
|
Footer !
|
|
|
|
|
Lengths are to the nearest pt.
\stockheight = 795pt \stockwidth = 614pt
\pageheight = 795pt \pagewidth = 598pt
\textheight = 562pt \textwidth = 396pt
\trimtop = Opt \trimedge = 17pt
\uppermargin = 114pt \spinemargin = 90pt
\headheight = 12pt \headsep = 24pt
\footskip = 24pt \marginparsep = 17pt
\marginparpush = 12pt \columnsep = 10pt

\columnseprule = 0.0pt

Figure 2.4: The recto page layout for this manual

28

2.11. Predefined layouts

\setlength{\trimedge}{\stockwidth}
\addtolength{\trimedge}{-\paperwidth}
\settypeblocksize{7.75in}{33pc}{*}
\setulmargins{4cm}{*}{*}
\setlrmargins{1.25in}{*}{*}
\setmarginnotes{17pt}{51pt}{\onelineskip}
\setheadfoot{\onelineskip}{2\onelineskip}
\setheaderspaces{*}{2\onelineskip}{*}
\checkandfixthelayout

Anillustration of the layout is shown in Figure 2.4 which also lists the parameter values
resulting from the code above, to the nearest point.

I initially used the layout defined in §2.10, which I thought looked reasonable, but
then I decided to use the one above in order to save paper when anyone printed out the
manual. The wider typeblock also makes it easier for TeX when dealing with lines that
include unhyphenatable text, like the LaTeX code.

Andreas Mathias, via Rolf Niepraschk,'® has suggested that the following might be
better for typesetting the manual on A4 paper.

\documentclass [a4paper] {memoir}

\settrimmedsize{297mm}{210mm}{*}
\setlength{\trimtop}{Opt}
\setlength{\trimedge}{\stockwidth}
\addtolength{\trimedge}{-\paperwidth}
\settypeblocksize{634pt}{448.13pt}{*}
\setulmargins{4cm}{*}{*}
\setlrmargins{*}{*}{1.5}
\setmarginnotes{17pt}{51ipt}{\onelineskip}
\setheadfoot{\onelineskip}{2\onelineskip}
\setheaderspaces{*}{2\onelineskip}{*}
\checkandfixthelayout

However, the layout that I have provided will print on both letterpaper and A4 sized
stock even if it might look better if it was designed for always being printed on one or the
other.

2.11 PREDEFINED LAYOUTS

The class, like the standard classes, will automatically produce working layouts for letter-
paper and a4paper size options. They might be a bit problematic, though, when the page
is much smaller, particularly with respect to the space alloted for marginal notes. You
perhaps will find the layouts package [?] useful for checking the page layout.

Some non-default layouts are provided via the commands \medievalpage, \isopage
and \semiisopage; these set the size and position of the typeblock with respect to the
page. After using any of these commands you must call \checkandfixthelayout (and
after having made any other changes to match the new layout).

19Email from niepraschk@ptb.de on 2002/02/05.

29

niepraschk@ptb.de

2. LAYING OUT THE PAGE

Figure 2.5: Default layout for letterpaper

Figure 2.6: Letterpaper layout: Left \medievalpage, Right \medievalpage [12]

Figure 2.7: Letterpaper layout: Left \isopage, Right \isopage [12]

Figure 2.8: Letterpaper layout: Left \semiisopage, Right \semiisopage [12]

30

2.11. Predefined layouts

Figure 2.9: Default layout for a4paper

Figure 2.10: Adpaper layout: Left \medievalpage, Right \medievalpage [12]

Figure 2.11: Adpaper layout: Left \isopage, Right \isopage [12]

Figure 2.12: Adpaper layout: Left \semiisopage, Right \semiisopage [12]

31

2. LAYING OUT THE PAGE

| \medievalpage [{spine)] ‘

The \medievalpage command generates the position and size of the typeblock according
to the principles of medieval scribes and the early printers, as discovered and described by
Jan Tschichold [?]. The basic principle is that the spine, top, fore-edge and bottom margins
around the typeblock are in the ratio 2:3:4:6. Typically the spine margin was 1/9 the width
of the page, which is what \medievalpage assumes by default. This can be changed with
the optional (spine) argument. For example, to get narrower margins with the spine being
1/12 the page width:

\medievalpage [12]
Note that (spine) must be an integer. See figures 2.5-2.12.

\isopage [(spine)]
\semiisopage [(spine)]

Robert Bringhurst [?] presented a page layout that was especially suitable for ISO propor-
tioned paper, although it can be applied to any page proportion. The \isopage command
implements this design. The spine margin is normally 1/9 the page width and the top mar-
gin is 1/9 the page height, and the fore-edge and bottom margins are respectively twice
the spine and top margins.

The \semiisopage layout is similar where the spine margin by defaultis 1/9 the page
width, but the top margin is the same as the spine margin. Again the fore-edge and bottom
margins are respectively twice the spine and top margins.

The size of the spine (and top) margins can be changed by using the optional (spine)
argument, which must be an integer. To set the spine margin to be, for example, 1/8 of the
page width:

\semiisopage[8]% or \isopage[8]

The same factor applies to both the spine and top margins in the case of \isopage.
Spreads showing a variety of these layouts are in Figure 2.5 through 2.12. These were
produced with the aid of the layouts package.

2.12 PLACE TRIMMED PAGE ON THE STOCK

As mentined earlier, when the resulting paper size is smaller than the stock that it
is printed on, you'll need to specify the trimmed size (the resulting paper size) us-
ing \settrimmedsize and you’ll want to position that in relation to the stock using
\settrims.

There are nine common layouts, so we made nine easy tro use macros. The take
the same arguments as \settrimmedsize and then automatically add an appropriate
\settrims.

32

2.12. Place trimmed page on the stock

\setpagetld{(height)}{(width)}{(ratio)} (top-left)

\setpagetm{ (height)}{(width)}{(ratio)} (top-middle)
\setpagetr{(height)}{(width)}{(ratio)} (top-right)
\setpagebld{(height)}{(width)}{(ratio)} (bottom-left)
\setpagebm{ (height)}{ (width) }{(ratio)} (bottom-middle)
\setpagebr{(height)}{ (width)}{(ratio)} (bottom-right)
\setpageml{(height)}{(width)}{(ratio)} (middle-left)
\setpageccq{(height)}{(width)}{(ratio)} (center, alias \setpagemm)
\setpagemr{ (height) }{ (width) }{(ratio)} (middle-right)

Note: Always remember to combine this with \checkandfixthelayout!
For instance, if you are using letterpaper stock but want the final trimmed page size to
be A5, then this will put page area at the bottom left of the stock.

% letterpaper stock added via class option
\pagebv 7, sets \paperheight and \paperwidth for A5 paper
\setpagebl{\paperheight}{\paperwidth}{*}

\checkandfixthelayout

The above macros position the page at the left of the stock because usually trimming of the
stock is limited to the top, right, and bottom, the left being the spine when the pages are
finally assembled.

In Figure 2.13 we show the effect of the nine \setpageXX. The code used for the exam-
ples is similar to the code below, and then the result was scaled down.

\documentclass [showtrims] {memoir}
\trimLmarks
\setstocksize{18cm}{15cm}
\setpagebl{16cm}{12cm}{*}
\setlrmarginsandblock{15mm}{15mm}{*}
\setulmarginsandblock{15mm}{15mm}{*}
\setheadfoot{5mm}{5mm}
\checkandfixthelayout [fixed]
\pagestyle{empty}
\AtBeginDocument{\LARGE}
\begin{document}
\begin{vplace}
\centering
\cs{setpagebl}\marg{height}\marg{width}\marg{ratio}
\end{vplace}
\end{document}

33

2. LAYING OUT THE PAGE

\setpagebl{(height)H (width)}{(ratio)} —

\setpageml{(height)}{(width)}{(ratio)} —

\setpaget1{(height)}{ (width)}{(ratio)} -

— \setpagetm{ (height) H (width) H{(ratio)}

— \setpagetr{(height)}{ (width)}{(ratio)}

—_— \setpagemr{(height)}{ (width)} (ratio)}

— \setpagebr{(height)}{ (width)}{(ratio)}

\setpagebm{ (height) } (width) H (ratio)} —

\setpagecc{(height)H (width)}{{ratio)} —

Figure 2.13: Example of the nine \setpageXX macros for placing a trimmed page on the
stock. These are all odd pages, under twoside, even pages will have the left/right trims
reversed. The outer frames indicate the stock size. Inside the trim marks hint at where the

page is positioned on the stock.

34

Three

Text and fonts

Presumably you will be creating a document that contains at least some text. In this chapter
I talk a little about the kinds of fonts that you might use and how text appears on a page.

3.1 FONTS

(La)TeX comes with a standard set of fonts, designed by Donald Knuth, and known as
the Computer Modern font family. The Knuthian fonts were created via the Metafont
program [?, ?] and are in the form of bitmaps (i.e., each character is represented as a bunch
of tiny dots). Fonts of this kind are called bitmap fonts. There is also a wide range of
Metafont fonts available, created by many others, in addition to the standard set. More
modern digital fonts, such as PostScript or TrueType fonts are represented in terms of the
curves outlining the character, and it is the job of the printing machine to fill in the outlines
(with a bunch of tiny dots). Fonts of this type are called outline fonts.

Metafont fonts are designed for a particular display resolution and cannot reasonably
be scaled to match an arbitrary display device, whereas outline fonts can be scaled before
they are physically displayed.

There is an excessive number of PostScript and TrueType fonts available and these can
all, with some amount of effort, be used with LaTeX. How to do that is outside the scope
of this work; Alan Hoenig has written an excellent book on the subject [?] and there is
the invaluable The LaTeX Companion [?, Chapter 7 Fonts and Encodings]. The original
The LaTeX Graphics Companion had chapters on PostScript fonts and tools but these were
dropped in the second edition to keep it below an overwhelming size. This material has
been updated and is available free from http://xml.cern.ch/lgc2; you can also get
a ‘work in progress’ about XeTeX, Unicode, and Opentype fonts from the same source.
There is less detailed, but also free, information available via CTAN, for example Philipp
Lehman'’s Font Installation Guide [?]; even if you are not interested in installing PostScript
fonts this is well worth looking at just as an example of the kind of elegant document that
can be achieved with LaTeX. If you choose one of the popular PostScript fonts, such as
those built into PostScript printers, you may well find that the work has been done for you
and it’s just a question of using the appropriate package.

A standard LaTeX distribution includes some PostScript fonts and the packages to sup-
port them are in the psnfss bundle. Most of the fonts are for normal text work but two
supply symbols rather than characters. Table 3.1, although it is specifically for Palatino,
shows the glyphs typically available. Table 3.2 and 3.3 show the glyphs in the two symbol
fonts.

These supplied PostScript fonts, their respective LaTeX fontfamily names, and running
text examples of each, are:

35

http://xml.cern.ch/lgc2

3. TEXT AND FONTS

36

Table 3.1: Glyphs in the LaTeX supplied Palatino roman font

0 1 2 3 4 5 6 7
8 9 10 11 12 "13 j 14 ¢ 15
116 17 S 18 “19 Y20 Y2 2 ‘2
L2 B2 ® 2 ce 27 a3 ZE 2 E 30 D 31
2 !33 "3 #35 $ 36 % 37 & 38)
(20) * 1 + 13 , 44 - 45 . 46 / 47
048 149 2 50 351 4 5 553 654 7 55
8 56 9 57 158 ;59 < 60 =61 > 62 ? 63
@ 64 Aes B 66 Cer Des E 6 Fno Gn
Hn» 17 J7 K L7 M7 N7 O
Pso Qs R Ss3 T sa Uss V s6 W g7
X 88 Y 89 Z % [\ 92]9 o4 _9%
" 96 aor b 9s C 9 d 100 e 101 f 102 g 103
h 104 1105 j 106 k 107 1 108 m 109 n 110 0111
p 12 q 13 I 114 S 115 t 116 u V 118 W 119
X 120 y 121 Z 12 {12 | 124 } 125 126 T 127
N 128 ~ 129 C 130 [[ais € 134 €135
S 136 7137 D 138 139 140 141 142 143
144 145 S 16 147 148 149 150 151
Y 152 153 7 15 155 156 157 158 159
160 161 ¢ 162 £ 163 /164 ¥ 165 f 166 § 167
O 168 © 169 “ 170 «171 <172 > 173 fi 174 fl 175
° 176 —177 Tz T * 180 181 q 182 ® 183
, 184 ,, 185 " 186 » 187 . 188 %o 189 190 191
Ao A 103 A 104 A 195 A 19 N 198 " 199
E 200 E 2o E 20 E 203 1204 205 . 206 T 207
— 208 N 209 O 210 O O O3 O2u 215
216 Uy U 2is U2 U 20 Y 21 P o 23
a 224 4 25 a 26 4 7 a 28 a 29 230 ¢ 231
Lo é 233 €23 © 235 1236 1237 1238 1239
240 241 0 242 6 23 0 2u 0 245 O 246 247
T 248 U 249 1 250 0 251 U 252 y 253 p 254 ¥ 255

3.1. Fonts

Table 3.2: Glyphs in the LaTeX distributed Symbol font

32 !33 V 34 # 35 d36 % 37 & 38 339
(40)au * 42 + 43 , 44 —45 . 46 / a7
048 149 2 50 35 4 5 553 654 7 55
8 56 957 158 ;59 <60 =61 > 62 763
=64 A 65 B 66 X7 Aes E ¢ P 7 I'n
H~» Iz O 74 K7 A 76 M7 N s O
ITso O s Ps Y83 T 84 Y &5 G 86 Q g7
= 88 W 59 Z % [o1 .92] 93 Los %

96 o 97 [5 98 X 9 S 100 € 101 0 102 Y 103
T 104 1105 @ 106 K 107 A 108 L 109 V 110 0 111
T 112 0 113 p 114 G115 T 116 V117 o 118 119
& 120 VY121 €12 {123 | 124 } 125 ~ 126 127

160 T 161 " 162 <163 /164 0 165 f 166 & 167
* 168 ¥ 169 A 170 ©an — 17 T — 17 s
° 176 +a77 7 178 > 179 X 180 o< 181 d 182 ® 153
+ 184 # 185 = 186 =~ 187 ... 188 | 189 — 190 191
N 192 S 193 R 104 0 195 ® 196 @ 197 D 198 M 199
U 200 D201 Dom & 203 C 204 C 205 € 206 & 207
Z 208 V 209 ® 210 © 2n ™ 51 1123 214 - 215
—1216 A 217 V 218 =30 =5 Mo = U 23
O 224 (25 ® 226 © 27 ™ 228 Y 229 (230 | 21
\232 [2 | 254 L 235 [236 { 27 [238 | 230

240 Y241 [212 (243 | 2us J s \246 247
)248 T2 [250 Jos1] 25 t 253) 254 255

37

3. TEXT AND FONTS

Table 3.3: Glyphs in the LaTeX distributed Zapf Dingbat font

32 o 33 <34 * 35 &< 36 T 37 © 38 @ 39
¥ 40 = 4 - 5 I 43 & #9 45 N 46 = 47
& a8 < 49 % 50 v 51) X 53 ® 54 X 55
X 56 dF 57 + s + 59 =60 T e T 62 t 6
¥ 64 %X 65 + 66 67 < 68 % 6 + 70 $n
* 72 % 73 S * 75 * 76 * 77 % 78 * 79
7% 80 % 51 3 82 * 83 * 84 * 85 X g6 X* 57
¥ 58 * 59 * 90 B30 L) % o3 LN - X0
*® 96 & o7 D o8 % 99 100 # 10 # 102 3 103
104 ® 105 # 106 * 107 ® 105 O 109 Mo dm
0112 s 3 114 A 115 V¥ 116 ® 17 & 118 | T
[120 1121 | R ¢ 123 9 124 6 155 * 126 127

160 O 6 S 162 T 163 ¥ 5 t BT @ 166 8 167
& 165 L BT ¥ 170 &7 @ 172 @ 173 @ 174 @ 175
® 176 ® 177 @ 178 179 @ 180 ® 181 0 1 A 153
® 154 (4 BT A 136 ® 157 @ 153 O 139 ® 190 D 191
@ 192 @ 193 @ 194 @ 195 ® 196 ® 197 @ 198 199
® 200 201 (1]JP1) D 203 O 204 O 205 O 206 0 207
Q 2 O 200 O 210 O s) — 213 <> 214 T s
216 => 217 ” 218 > 219 => 20 — 21 — = 223
w24 = 25 > 26 > 227 >» 8 - 229 = 230 | JPEH
» o3 = 233 0 234 & 235 = 236 © 237 © 238 = 239

240 = 241 Do B 243 N ooy = 245 7 246 * 247
»> 248 ¥ 219 = 250 &+ 751 » 5 B 253 => 254 255

ITC Avant Garde Gothic is a geometric sans type designed by Herb Lubalin and
Tom Carnase and based on the logo of the Avant Garde magazine. The

fontfamily name is pag.

It was a dark and stormy night. While all the good men were coming to the
aid of the party, the quick brown dog had jumped over the fast red fox to its
great surprise. The cattle had wound slowly o’er the lea and | was in the dark.
‘But aren’t Kafka’s SchloB and Asop’s CEuvres often naive vis-a-vis the doe-
monic phoenix’s official réle in fluffy soufflés?’

Angeld Beatrice Claire Diana Erica Francoise Ginette Héléne Iris Jackie Karen
taura Maria N&tatie @ctave Pauline Quéneau Roxanne Sabine Taja Ursula

Vivian Wendy Xanthippe Yvgnne Zd&zilie

ITC Bookman was originally sold in 1860 by the Miller & Richard foundry in Scot-

38

3.1. Fonts

land; it was designed by Alexander Phemister. The ITC revival is by Ed
Benguiat. The fontfamily name is pbk.

It was a dark and stormy night. While all the good men were coming to the
aid of the party, the quick brown dog had jumped over the fast red fox to
its great surprise. The cattle had wound slowly o’er the lea and I was in the
dark.

‘But aren’t Kafka’s Schlof3 and Asop’s CEuvres often naive vis-a-vis the dee-
monic pheenix’s official réle in fluffy soufflés?’

Angela Beatrice Claire Diana Erica Francoise Ginette Hélene Iris Jackie
Karen Lautra Maria Natalie Octave Pauline Quéneau Roxanne Sabine Taja
Ursula Vivian Wendy Xanthippe Yvgnne Zazilie

Bitstream Charter was designed by Matthew Carter for display on low resolution devices,
and is useful for many applications, including bookwork. The fontfamily name is bch.

It was a dark and stormy night. While all the good men were coming to the aid of the
party, the quick brown dog had jumped over the fast red fox to its great surprise. The
cattle had wound slowly o’er the lea and I was in the dark.

‘But aren’t Kafka’s Schlo and Zsop’s CEuvres often naive vis-a-vis the deemonic
phoeenix’s official réle in fluffy soufflés?’

Angela Beatrice Claire Diana Erica Francoise Ginette Hélene Iris Jackie Karen Lauta
Maria Nétatie @ctave Pauline Quéneau Roxanne Sabine T&ja Ursula Vivian Wendy
Xanthippe Yvgnne Zizilie

Courier is a monospaced font that was originally designed by Howard
Kettler at IBM and then later redrawn by Adrian Frutiger.
The fontfamily name is pcr.

It was a dark and stormy night. While all the good men

were coming to the aid of the party, the quick brown dog

had jumped over the fast red fox to its great surprise. The
cattle had wound slowly o’er the lea and I was in the dark.
‘But aren’t Kafka’s SchloBl and Esop’s Guvres often nailve
vis—a-vis the demonic phenix’s official rdle in fluffy
soufflés?’

Angeld Beatrice Claire Diana Erica Francoise Ginette Héléne
Iris Jackie Karen tkautra Maria N&tailie @ctave Pauline Quéneau
Roxanne Sabine Tadja UrsSula Vivian Wendy Xanthippe Yvgnne
Zazilie

Helvetica was originally designed for the Haas foundry in Switzerland by Max Miedinger;
it was later extended by the Stempel foundry and further refined by Linotype. The
fontfamily name is phv.

It was a dark and stormy night. While all the good men were coming to the aid of the
party, the quick brown dog had jumped over the fast red fox to its great surprise. The
cattle had wound slowly o’er the lea and | was in the dark.

39

3. TEXT AND FONTS

‘But aren’t Kafka’s Schlo3 and Asop’s CEuvres often naive vis-a-vis the daemonic
phecenix’s official réle in fluffy soufflés?’

Angela Beatrice Claire Diana Erica Francoise Ginette Héléne Iris Jackie Karen taufa
Maria Natalie Octave Pauline Quéneau Roxanne Sabine Taja UrSula Vivian Wendy
Xanthippe Yvgnne Zazilie

New Century Schoolbook was designed by Morris Benton for ATF (American Type
Founders) in the early 20th century. As its name implies it was designed for
maximum legibility in schoolbooks. The fontfamily name is pnc.

It was a dark and stormy night. While all the good men were coming to the aid
of the party, the quick brown dog had jumped over the fast red fox to its great
surprise. The cattle had wound slowly o’er the lea and I was in the dark.

‘But aren’t Kafka’s Schlofl and ZAsop’s (Euvres often naive vis-a-vis the deemonic
pheenix’s official réle in fluffy soufflés?’

Angela Beatrice Claire Diana Erica Francoise Ginette Hélene Iris Jackie Karen
Laura Maria Natalie Octave Pauline Quéneau Roxanne Sabine T&ja Ursula Vi-
vian Wendy Xanthippe Yvgnne Zizilie

Palatino was designed by Hermann Zapf and is one of the most popular typefaces today.
The fontfamily name is ppl.

It was a dark and stormy night. While all the good men were coming to the aid of
the party, the quick brown dog had jumped over the fast red fox to its great surprise.
The cattle had wound slowly o’er the lea and I was in the dark.

‘But aren’t Kafka’s Schlofs and Zsop’s (Euvres often naive vis-a-vis the deemonic
phoenix’s official role in fluffy soufflés?’

Angela Beatrice Claire Diana Erica Francoise Ginette Hélene Iris Jackie Karen Laura
Marfa Nétatie Octave Pauline Quéneau Roxanne Sabine Tdja UrSula Vivian Wendy
Xanthippe Yvenne Zizilie

Times Roman is Linotype’s version of the Times New Roman face designed by Stanley Morison
for the Monotype Corporation for printing The Times newspaper. The fontfamily name is
ptm.

It was a dark and stormy night. While all the good men were coming to the aid of the party,
the quick brown dog had jumped over the fast red fox to its great surprise. The cattle had
wound slowly o’er the lea and I was in the dark.

‘But aren’t Kafka’s Schlof3 and ZAsop’s (Euvres often naive vis-a-vis the demonic phoenix’s
official rdle in fluffy soufflés?’

Angelé’l Beatrice Claire Diana Erica Francoise Ginette Hélene Iris Jackie Karen Faura Maria
Nétatie @ctave Pauline Quéneau Roxanne Sabine Tdja UrSula Vivian Wendy Xanthippe
Yvgnne Zizilie

Utopia was designed by Robert Slimbach and combines Transitional features and con-
temporary details. The fontfamily name is put.

40

3.1. Fonts

It was a dark and stormy night. While all the good men were coming to the aid of
the party, the quick brown dog had jumped over the fast red fox to its great surprise.
The cattle had wound slowly o’er the lea and I was in the dark.

‘But aren’t Kafka’s Schlo8 and Asop’s (Euvres often naive vis-a-vis the deemonic
pheenix’s official role in fluffy soufflés?’

Angel4 Beatrice Claire Diana Erica Frangoise Ginette Héléne Iris Jackie Karen Lauia
Maria Nétalie @ctave Pauline Quéneau Roxanne Sabine Tdja UrSula Vivian Wendy
Xanthippe Yvenne Zizilie

ITC Zapf Chancery is a Script type fashioned after the chancery handwriting styles of the Italian Renais-
sance. It was created by Hermann Zapf. The fontfamily name is pzC.

It was a dark and stormy night. While all the good men were coming to the aid of the party, the quick.
brown dog had jumped over the fast red fox to its great surprise. The cattle had wound slowly o’er the lea
and I was in the dark,

‘But aren’t Kafka's Schloff and Lsop’s Euvres often naive vis-d-vis the demonic phenix’s official réle in
fluffy soufflés?’

Angeld Beatrice Claire Diana Erica Frangoise Ginette Helene Iris Jackie Karen £aura Maria Nitatie
Dctave Pauline Quéneau Roxanne Sabine Tdja Ursula Vivian Wendy Xanthippe Yognne Zizilie

Symbol contains various symbols and Greek letters for mathematical work; these are most
easily accessible via the pifont package. The fontfamily name is psy.
The available glyphs are shown in Table 3.2.

Zapf Dingbats contains a variety of dingbats which, like the Symbol characters, are most
easily accessible via the pifont package. The fontfamily name is pzd.
The available glyphs are shown in Table 3.3.
In LaTeX there are three characteristics that apply to a font. These are: (a) the shape,
(b) the series (or weight), and (c) the family. Table 3.4 illustrates these and lists the relevant
commands to access the different font categories.
The normal body font — the font used for the bulk of the text — is an upright, medium,
roman font of a size specified by the font size option for the \documentclass.

| \normalfont \

The declaration \normalfont sets the font to be the normal body font.

There is a set of font declarations, as shown in Table 3.5, that correspond to the com-
mands listed in Table 3.4. The commands are most useful when changing the font for a
word or two, while the declarations are more convenient when you want to typeset longer
passages in a different font.

Do not go wild seeing how many different kinds of fonts you can cram into your work
as in Example 3.1.

Source for Example 3.1
Mixing \textbf{different series, \textsf{families}} and

\textsl{\texttt{shapes,}} \textsc{especially in one sentence,}
is usually \emph{highly inadvisable!}

41

3.

TEXT AND FONTS

Table 3.4: Font categorisation and commands

Shape
Upright shape \textup{Upright shape}
Italic shape \textit{Italic shape}
Slanted shape \textsl{Slanted shape}

SMALL CAPS SHAPE \textsc{Small Caps shape}

Series or weight

Medium series \textmd{Medium series}

Bold series \textbf{Bold series}
Family

Roman family \textrm{Roman family}

Sans serif family \textsf{Sans serif family}

Typewriter family \texttt{Typewriter family}

Table 3.5: Font declarations

Shape
Upright shape {\upshape Upright shape}
Italic shape {\itshape Italic shape}
Slanted shape {\slshape Slanted shape}

SMALL CAPS SHAPE {\scshape Small Caps shape}

Series or weight

Medium series {\mdseries Medium series}
Bold series {\bfseries Bold series}
Family
Roman family {\rmfamily Roman family}
Sans serif family {\sffamily Sans serif family}

Typewriter family {\ttfamily Typewriter family}

Typeset Example 3.1: Badly mixed fonts

Mixing different series, families and shapes, ESPECIALLY IN ONE SENTENCE, is

usually highly inadvisable!

42

3.1. Fonts

Typeset Example 3.2: Sometimes mixed fonts work

DES DAMES DU TEMPS JADIS

Prince, n’enquerez de sepmaine
Ou elles sont, ne de cest an,
Qu’a ce reffrain ne vous remaine:
Mais ou sont les neiges d’antan?

Prince, do not ask in a week

Or yet in a year where they are,

I could only give you this refrain:

But where are the snows of yesteryear?

Frangois Villon [1431-14637?]

On the other hand there are occasions when several fonts may be used for a reasonable
effect, as in Example 3.2.

Source for Example 3.2

\begin{center}

\textsc{Des Dames du Temps Jadis}

\end{centerl}y

\settowidth{\versewidth}{0Or yet in a year where they are}
\begin{versel} [\versewidth] \begin{itshape}

Prince, n’enquerez de sepmaine *

Ou elles sont, ne de cest an, *

Qu’a ce reffrain ne vous remaine: *

Mais ou sont les neiges d’antan?

\end{itshape}

Prince, do not ask in a week *

Or yet in a year where they are, *

I could only give you this refrain: *

But where are the snows of yesteryear?
\end{verse}

\begin{flushright}

{\bfseries Fran\c{c}ois Villon} [1431--14637]
\end{flushright}

| \emph{(text)} \

The \emph command is a font changing command that does not fit into the above scheme
of things. What it does is to typeset its (text) argument using a different font than the sur-

43

3. TEXT AND FONTS

Typeset Example 3.3: Emphasis upon emphasis

The \emph command is used to produce some text that should be emphasised for some
reason and can be infrequently interspersed with some further emphasis just like in this
sentence.

rounding text. By default, \emph switches between an upright shape and an italic shape.
The commands can be nested to produce effects like those in the next example.

Source for Example 3.3

The \verb?\emph? command is used to produce some text that
should be \emph{emphasised for some reason and can be
\emph{infrequently interspersed} with some further emphasis}
just like in this sentence.

| \eminnershape{(shape)} |

If the \emph command is used within italic text then the newly emphasized text will be
typeset using the \eminnershape font shape. The default definition is:

\newcommand*{\eminnershape}{\upshape}

which you can change if you wish.!

3.2 FONT SIZES

The Computer Modern Metafont fonts come in a fixed number of sizes, with each size
being subtly different in shape so that they blend harmoniously. Traditionally, characters
were designed for each size to be cut, and Computer Modern follows the traditional type
design. For example, the smaller the size the more likely that the characters will have a
relatively larger width. Outline fonts can be scaled to any size, but as the scaling is typically
linear, different sizes do not visually match quite as well.

Computer Modern fonts come in twelve sizes which, rounded to a point, are: 5, 6, 7,
8,9,10,11, 12, 14, 17, 20 and 25pt. In LaTeX the size for a particular font is specifed by
a macro name like \scriptsize and not by points; for example \scriptsize, not 7pt.?
The actual size of, say, \scriptsize characters, is not fixed but depends on the type size
option given for the document.

Standard LaTeX provides ten declarations, illustrated in Table 3.6, for setting the type
size, which means that two of the sizes are not easily accessible. Which two depend on the
class and the selected point size option. However, for normal typesetting four different

1 The maintainer often sets it to \bfseries\itshape as just setting it as \upshape might not give enough
emphasis.
%It is possible to use points but that is outside the scope of this manual.

44

3.2. Font sizes

Table 3.6: Standard font size declarations

\tiny tiny \scriptsize scriptsize
\footnotesize footnotesize \small small
\normalsize normalsize \large large
\Large Large \LARGE LARGE

\huge huge \Huge Huge

Table 3.7: Standard font sizes

Class option 10pt 11pt 12pt
\tiny 5pt 6pt 6pt
\scriptsize 7pt 8pt 8pt
\footnotesize 8pt I9pt 10pt
\small 9pt 10pt 1lpt
\normalsize 10pt 11pt 12pt
\large 12pt 12pt 14pt
\Large 14pt 14pt 17pt
\LARGE 17pt 17pt 20pt
\huge 20pt 20pt 25pt
\Huge 25pt 25pt 25pt

sizes should cover the majority of needs, so there is plenty of scope with a mere ten to
choose from.

The \normalsize is the size that is set as the class option and is the size used for the
body text. The \footnotesize is the size normally used for typesetting footnotes. The
standard classes use the other sizes, usually the larger ones, for typesetting certain aspects
of a document, for example sectional headings.

With respect to the standard classes, the memoir class provides a wider range of
the document class type size options and adds two extra font size declarations, namely
\miniscule and \HUGE, one at each end of the range.

The memoir class font size declarations names are given in Table 3.8 together with the
name set in the specified size relative to the manual’s \normalsize font. font. The corre-
sponding actual sizes are given in Table 3.9.

Whereas the standard font sizes range from 5pt to 25pt, memoir provides for fonts
ranging from 4pt to 132pt. That is:

from the 4pt size (the 9pt \miniscule size)

through the 9pt normal size

45

3. TEXT AND FONTS

Table 3.8: The memoir class font size declarations

\miniscule
\scriptsize

\small
\large

\LARGE

\Huge

miniscule

scriptsize

small

large

LARGE \huge
Huge \HUGE

\tiny
\footnotesize
\normalsize

\Large

tiny

footnotesize
normalsize

Large

huge
HUGE

Table 3.9: The memoir class font sizes

Class option 9pt 10pt 1lpt 12pt 14pt 17pt 20pt 25pt 30pt 36pt 48pt 60pt
\miniscule 4pt S5pt 6pt 7pt 8pt 9pt 10pt 1lpt 12pt 14pt 17pt 20pt
\tiny 5pt 6pt 7pt 8pt 9pt 10pt 1llpt 12pt 14pt 17pt 20pt 25pt
\scriptsize 6pt 7pt 8pt 9pt 10pt 1lpt 12pt 14pt 17pt 20pt 25pt 30pt
\footnotesize 7pt 8pt 9pt 10pt 1lpt 12pt 14pt 17pt 20pt 25pt 30pt 36pt
\small 8pt 9pt 10pt 1lpt 12pt 14pt 17pt 20pt 25pt 30pt 36pt 48pt
\normalsize 9pt 10pt 1lpt 12pt 14pt 17pt 20pt 25pt 30pt 36pt 48pt 60pt
\large 10pt 11pt 12pt 14pt 17pt 20pt 25pt 30pt 36pt 48pt 60pt 72pt
\Large 11pt 12pt 14pt 17pt 20pt 25pt 30pt 36pt 48pt 60pt 72pt 84pt
\LARGE 12pt 14pt 17pt 20pt 25pt 30pt 36pt 48pt 60pt 72pt 84pt 96pt
\huge l4pt 17pt 20pt 25pt 30pt 36pt 48pt 60pt 72pt 84pt 96pt 108pt
\Huge 17pt 20pt 25pt 30pt 36pt 48pt 60pt 72pt 84pt 96pt 108pt 120pt
\HUGE 20pt 25pt 30pt 36pt 48pt 60pt 72pt 84pt 96pt 108pt 120pt 132pt

through the

60pt normal
size

46

to them
13 Zpt
size

TTTTTTTTTTTTTT

3.3. Spaces

size).

This extended range, though, is only accessible if you are using outline fonts and the
extrafontsizes class option. If you are using bitmap fonts then, for example, the \HUGE font
will be automatically limited to 25pt, and the minimum size of a \miniscule font is 5pt.

3.3 SPACES

3.3.1 Paragraphs

In traditional typography the first line of a paragraph, unless it comes immediately after a
chapter or section heading, is indented. Also, there is no extra space between paragraphs.
Font designers go to great pains to ensure that they look good when set with the normal
leading. Sometimes, such as when trying to meet a University’s requirements for the lay-
out of your thesis, you may be forced to ignore the experience of centuries.

If you like the idea of eliminating paragraph indentation and using extra inter-
paragraph space to indicate where paragraphs start and end, consider how confused your
reader will be if the last paragraph on the page ends with a full line; how will the reader
know that a new paragraph starts at the top of the following page?

\par

\parskip
\abnormalparskip{(length)}
\nonzeroparskip
\traditionalparskip

In the input text the end of a paragraph is indicated either by leaving a blank line, or by
the \par command. The length \parskip is the inter-paragraph spacing, and is normally
Opt. You can change this by saying, for example:

\setlength{\parskip}{2\baselineskip}

but you are likely to find that many things have changed that you did not expect, because
LaTeX uses the \par command in many places that are not obvious.

If, in any event, you wish to do a disservice to your readers you can use
\abnormalparskip to set the inter-paragraph spacing to a value of your own choosing.
Using the \nonzeroparskip will set the spacing to what might be a reasonable non-zero
value.® Both these macros try and eliminate the worst of the side effects that occur if you
just simply change \parskip directly.

3Except that all values except zero are unreasonable.

49

3. TEXT AND FONTS

Following the \traditionalparskip declaration all will be returned to their tradi-
tional values.

I based the code for these functions upon the NTG classes [?] which indicated some
of the pitfalls in increasing the spacing. The difficulty is that \par, and hence \parskip,
occurs in many places, some unexpected and others deeply buried in the overall code.

| \parindent \

The length \parindent is the indentation at the start of a paragraph’s first line. This is
usually of the order of 1 to 11/ em. To make the first line of a paragraph flushleft set this
to zero:

\setlength{\parindent}{Opt}

Though, this is generally not recommended, as it can make it difficult for the reader to see
when new paragraph starts, thuse use with care.

3.3.2 Double spacing

Some of those that have control over the visual appearance of academic theses like them to
be ‘double spaced’. This, of course, will make the thesis harder to read* but perhaps that
is the purpose, or maybe they have stock (shares) in papermills and lumber companies, as
the theses were usually required to be printed single sided as well.

| \baselineskip \onelineskip \

The length \baselineskip is the space, or leading, between the baselines of adjacent text
lines, and is constant throughout a paragraph. The value may change depending on the
size of the current font. More precisely, the \baselineskip depends on the font being
used at the end of the paragraph. The class also provides the length \onelineskip which
is the default leading for the normal body font.” As far as the class is concerned this is
a constant value; that is, unlike \baselineskip, it never alters \onelineskip. You can
use (fractions) of \onelineskip to specify vertical spaces in terms of normal text lines.

The following is heavily based on the setspace package [?], but the names have been
changed to avoid any clashes. Like the nonzero \parskip, the \baselineskip rears its
head in many places, and it is hard for a package to get at the internals of the overlying
class and kernel code. This is not to say that all is well with trying to deal with it at the
class level.

\OnehalfSpacing \OnehalfSpacing*
\DoubleSpacing \DoubleSpacing*

The declaration \OnehalfSpacing increases the spacing between lines so that they
appear to be double spaced (especially to the thesis layout arbiters), while the declaration
\DoubleSpacing really doubles the spacing between lines which really looks bad; but if
you have to use it, it is there. The spacing in footnotes and floats (e.g., captions) is un-
altered, which is usually required once the controllers see what a blanket double spacing
brings. Sometimes it is also required to make page notes and floats (including captions)

41 certainly found them so when I was having to read them before examining the candidates for their degrees.
The writers of the regulations, which were invariably single spaced, seemed immune to any suggestions.

5That is \onelineskip is set in the memX.clo file corresponding to the font size class option. For 10pt, the
size is set viamem10. clo.

50

3.3. Spaces

in “‘double’ spacing. The starred version of the two macros above takes care of this. Alter-
natively the spacing in page notes (i.e. footnotes and friends) or floats an be set explicitly
using

\setPagenoteSpacing{(factor)}
\setFloatSpacing{(factor)}

\setFloatSpacing should go after say \OnehalfSpacing if used.

\SingleSpacing
\SingleSpacing*
\setSingleSpace{(factor)}

The \setSingleSpace command is meant to be used to adjust slightly the normal spacing
betwen lines, perhaps because the font being used looks too crampled or loose. The effect
is that the normal \baselineskip spacing will be multiplied by (factor), which should be
close to 1.0. Using \setSingleSpace will also reset the float and page note spacings.

The declaration \SingleSpacing returns everthing to normal, or at least the setting
from \setSingleSpace if it has been used. It will also reset float and page note spacings
to the same value.

Note. \SingleSpacing will also issue a \vskip\baselineskip at the end (which is ig-
nored if \SingleSpacing is used in the preamble). This skip makes sure that comming from
\DoubleSpacing to \SingleSpacing still looks ok.

But in certain cases, this skip is unwanted. Therefore as of 2018 we added a
\SingleSpacing* that is equal to \SingleSpacing but does not add this skip.

\begin{SingleSpace} ..\end{SingleSpace}
\begin{Spacing}{(factor)} ... \end{Spacing}
\begin{OnehalfSpace} ... \end{OnehalfSpace}
\begin{OnehalfSpace*} ... \end{OnehalfSpacex*}
\begin{DoubleSpace} ... \end{DoubleSpace}
\begin{DoubleSpacex*} ... \end{DoubleSpace*}

These are the environments corresponding to the declarations presented earlier, for
when you want to change the spacing locally.

\setDisplayskipStretch{(fraction)}
\memdskipstretch
\noDisplayskipStretch
\memdskips

If you have increased the interlinear space in the text you may wish, or be required, to
increase it around displays (of maths). The declaration \setDisplayskipStretch will
increase the before and after displayskips by (fraction), which must be at least 0.0. More
precisely, it defines \memdskipstretch to be (fraction). The \noDisplayskipStretch
declaration sets the skips back to their normal values. It is equivalent to

\setDisplayskipStretch{0.0}

The skips are changed within the macro \memdskips which, in turn, is called by
\everydisplay. If you find odd spacing around displays then redefine \memdskips to
do nothing. Its orginal specification is:

51

3. TEXT AND FONTS

\newcommand*{\memdskips}{%
\advance\abovedisplayskip \memdskipstretch\abovedisplayskip
\advance\belowdisplayskip \memdskipstretch\belowdisplayskip
\advance\abovedisplayshortskip \memdskipstretch\abovedisplayshortskip
\advance\belowdisplayshortskip \memdskipstretch\belowdisplayshortskip}

If you need to use a minipage as a stand-alone item in a widely spaced text then you
may need to use the vminipage environment instead to get the before and after spacing
correct.

3.4 OVERFULL LINES

TeX tries very hard to keep text lines justified while keeping the interword spacing as
constant as possible, but sometimes fails and complains about an overfull hbox.

\fussy \sloppy

\begin{sloppypar?} ... \end{sloppypar}
\midsloppy

\begin{midsloppypar} ... \end{midsloppypar}

The default mode for LaTeX typesetting is \fussy where the (variation of) interword
spacing in justified text is kept to a minimum. Following the \sloppy declaration there
may be a much looser setting of justified text. The sloppypar environment is equivalent
to:

{\par \sloppy ... \par}

Additionally the class provides the \midsloppy declaration (and the midsloppypar
environment) which allows a setting somewhere between \fussy and \sloppy. Using
\midsloppy you will get fewer overfull lines compared with \fussy and fewer obvious
large interword spaces than with \sloppy. I have used \midsloppy for this manual; it
hasn’t prevented overfull lines or noticeably different interword spaces, but has markedly
reduced them compared with \fussy and \sloppy respectively.

3.5 SLOPPYBOTTOM

TeX does its best to avoid widow and orphan lines — a widow is where the last line of a
paragraph ends up at the top of a page, and an orphan® is when the first line of a paragraph
is at the bottom of a page.

The following is the generally suggested method of eliminating widows and orphans,
but it may well result in some odd looking pages, especially if \raggedbottom is not used.

\clubpenalty=10000
\widowpenalty=10000
\raggedbottom

| \enlargethispage{(length)}

6Knuth uses the term ‘club’ instead of the normal typographers’ terminology.

52

3.5. Sloppybottom

You can use \enlargethispage to add or subtract to the text height on a particular page
to move a line forwards or backwards between two pages.
Here is one person’s view on the matter:
...in experimenting with raggedbottom, widowpenalty, and clubpenalty, I
think that I have not found a solution that strikes me as particularly desirable.
I think what I would really like is that widows (i.e., left-over single lines that
begin on the following page) are resolved not by pushing one extra line from
the same paragraph also onto the next page, but by stretching the textheight to
allow this one extra at the bottom of the same page.
/iaw (from CTT, widow handling?, May 2006)

As so often happens, Donald Arseneau came up with a solution.

| \sloppybottom \

The declaration \sloppybottom lets TeX put an extra line at the bottom of a page to avoid
a widow on the following page.

The \topskip must have been increased beforehand for this to work (a 60% increase is
reasonable) and this will push the text lower on the page. Run \checkandfixthelayout
after the change (which may reduce the number of lines per page). For example, in the
preamble:

\setlength{\topskip}{1.6\topskip}
\checkandfixthelayout
\sloppybottom

The late Michael Downes provided the following (from CTT widow/orphan control pack-
age (for 2e)?,1998/08/31):
For what it’s worth here are the penalty values that I use when I don’t [want]
to absolutely prohibit widow /orphan break, but come about as close as TeX
permits otherwise. This is copied straight out of some code that I had lying
around. I guess I could wrap it into package form and post it to CTAN.
Michael Downes

% set \clubpenalty, etc. to distinctive values for use

% in tracing page breaks. These values are chosen so that

% no single penalty will absolutely prohibit a page break, but
% certain combinations of two or more will.

\clubpenalt=9996

\widowpenalty=9999

\brokenpenalty=4991

% Reiterate the default value of \redisplaypenalty, for

% completeness.

% Set postdisplaypenalty to a fairly high value to discourage a
% page break between a display and a widow line at the end of a
% paragraph.

\predisplaypenalty=10000

\postdisplaypenalty=1549

% And then \displaywidowpenalty should be at least as high as

% \postdisplaypenalty, otherwise in a situation where two displays

53

3. TEXT AND FONTS

% are separated by two lines, TeX will prefer to break between the
% two lines, rather than before the first line.
\displaywidowpenalty=1602

As you can see, perfect automatic widow/orphan control is problematic though ty-
pographers are typically more concerned about widows than orphans — a single line of a
paragraph somehow looks worse at the top of a page than at the bottom. If all else fails,
the solution is either to live with the odd line or to reword the text.

3.6 TEXT CASE

The standard kernel \MakeUppercase{(fext)} and \MakeLowercase{(text)} basically
upper or lower case everything it can get its hands on. In later years these macros have
been extended greatly, and can now ignore math, \1abel, \ref, \cite, \begin and \end.
Earlier one would need a package like textcase for this.

Changed. Earlier the class autoloaded textcase and used \MakeTextUppercase and Added August
\MakeTextLowercase. From Summer 2025 we provide the macros as aliases for the ~ ***
kernel macros (unless the user ahs manually loaded textcase.

\MakeUppercase{(text)}
\MakeLowercase{(text)}

Thus

\MakeUppercase{abc\ae\ \(a = b \) and $\alpha \neq a$
or even \ensuremath{x=y} and $\ensuremath{x=y}$}

Should produce (the upper is \MakeUppercase the latter line is manually typed):

ABCEa=bAND a# aOREVENz =y ANDz =y
ABCE a=bAND a# aOREVENz =y ANDxz =y

In case you have some text should should not be altered, use
| \NoCaseChange{(text)}

Example

\MakeTextUppercase{’,
The new \NoCaseChange{iPhone} yet more text}

which produces
THE NEW iPhone YET MORE TEXT

The kernel maintains a list of macros the casing should ignore, one can add to it via
\AddToNoCaseChangeList{\macro}. Additionally the kernel now also provide

| \MakeTitlecase{(text)} |
See [?, §7] for more.

54

Four

Titles

The standard classes provide little in the way of help in setting the title page(s) for your
work, as the \maketitle command is principally aimed at generating a title for an article
in a technical journal; it provides little for titles for works like theses, reports or books. For
these I recommend that you design your own title page layout! using the regular LaTeX
commands to lay it out, and ignore \maketitle.

Quoting from Ruari McLean [?, p. 148] in reference to the title page he says:

The title-page states, in words, the actual title (and sub-title, if there is one)
of the book and the name of the author and publisher, and sometimes also the
number of illustrations, but it should do more than that. From the designer’s
point of view, it is the most important page in the book: it sets the style. It is
the page which opens communication with the reader. ..

If illustrations play a large part in the book, the title-page opening should,
or may, express this visually. If any form of decoration is used inside the book,
e.g., for chapter openings, one would expect this to be repeated or echoed on
the title-page.

Whatever the style of the book, the title-page should give a foretaste of it.
If the book consists of plain text, the title-page should at least be in harmony
with it. The title itself should not exceed the width of the type area, and will
normally be narrower. ..

A pastiche of McLean’s title page is shown in Figure 4.1.

The typeset format of the \maketitle command is virtually fixed within the LaTeX
standard classes. This class provides a set of formatting commands that can be used
to modify the appearance of the title information; that is, the contents of the \title,
\author and \date commands. It also keeps the values of these commands so that they
may be printed again later in the document. The class also inhibits the normal automatic
cancellation of titling commands after \maketitle. This means that you can have mul-
tiple instances of the same, or perhaps different, titles in one document; for example on
a half title page and the full title page. Hooks are provided so that additional titling ele-
ments can be defined and printed by \maketitle. The \thanks command is enhanced
to provide various configurations for both the marker symbol and the layout of the thanks
notes.

Generally speaking, if you want anything other than minor variations on the
\maketitle layout then it is better to ignore \maketitle and take the whole layout into
your own hands so you can place everthing just where you want it on the page.

!1f you are producing a thesis you are probably told just how it must look.

55

4. TITLES

The Author

The Big Book of

With 123 illustrations

The Publisher

Figure 4.1: Layout of a title page for a book on typography

56

CONUNDRUMS CONSIDERED AS PUZZLES
FOR THE MIND

By
The Candidate
A Thesis Submitted to the Graduate
Faculty of The University
in Partial Fulfillment of the
Requirements for the Degree of
DEGREE
Major Subject: Logic

Approved by the
Examining Committee:

A Professor, Thesis Advisor

Another Professor, Thesis Advisor

A Faculty, Member

Another Faculty, Member

A Third Faculty, Member

The University
The Address

The Date

Figure 4.2: Example of a mandated title page style for a doctoral thesis

57

4. TITLES

58

THE NEW

FAMILY RECEIPT BOOK

CONTAINING A LARGE COLLECTION OF
HIGHLY ESTIMATED RECEIPTS IN A VARIETY
OF BRANCHES, NAMELY:

BREWING,
MAKING AND PRESERVING BRITISH WINES,

DYING,

RURAL AND DOMESTIC ECONOMY,
SELECTED FROM EXPERIENCED & APPROVED RECEIPTS,

FOR THE USE OF PUBLICANS
AND HOUSEKEEPERS IN GENERAL,

A GREAT MANY OF WHICH WERE NEVER BEFORE PUBLISHED.

BY G. MILLSWOOD.

PRICE ONE SHILLING

DERBY: PRINTED AND SOLD BY G. WILKINS AND SON,
QUEEN STREET.

Figure 4.3: Example of a Victorian title page

THE

BIG BOOK
OF
CONUNDRUMS

BY
THE AUTHOR

FOREWORD BY AN OTHER

THE PUBLISHER

Figure 4.4: Layout of a title page for a book on book design

59

4. TITLES

Some
Conundrums

Puzzles for the Mind

THE AUTHOR

The Publisher

Figure 4.5: Layout of a title page for a book about books

60

4.1. Styling the titling

4.1 STYLING THE TITLING

The facilities provided for typesetting titles are limited, essentially catering for the kind
of titles of articles published in technical journals. They can also be used as a quick and
dirty method for typesetting titles on reports, but for serious work, such as a title page for
a book or thesis, each title page should be handcrafted. For instance, a student of mine,
Donald Sanderson used LaTeX to typeset his doctoral thesis, and Figure 4.2 shows the title
page style mandated by Rensselear Polytechnic Institute as of 1994. Many other examples
of title pages, together with the code to create them, are in [?].

Another handcrafted title page from [?] is shown in Figure 4.3. This one is based on an
old booklet I found that was published towards the end of the 19th century and exhibits
the love of Victorian printers in displaying a variety of types; the rules are an integral part
of the title page. For the purposes of this manual I have used New Century Schoolbook,
which is part of the regular LaTeX distribution, rather than my original choice of Century
Old Style which is one of the commercial FontSite fonts licensed from the SoftMaker/ATF
library, supported for LaTeX through Christopher League’s estimable work [?].

The title page in Figure 4.4 follows the style of of The Design of Books [?] and a page
similar to Nicholas Basbanes A Gentle Madness: Bibliophiles, Bibliomanes, and the Eternal
Passion for Books is illustrated in Figure 4.5. These are all from [?] and handcrafted.

In contrast the following code produces the standard \maketitle layout.

Source for Example 4.1

\tit1le{MEANDERINGS}
\author{T. H. E. River \and
A. Wanderer\thanks{Supported by a grant from the
R. Ambler’s Fund}\\
Dun Roamin Institute, NY}
\date{1 April 1993\thanks{First drafted on 29 February 1992}}

\maketitle

This part of the class is a reimplementation of the titling package [?].
The class provides a configurable \maketitle command. The \maketitle command
as defined by the class is essentially

\newcommand{\maketitle}{%
\vspace*{\droptitle}
\maketitlehooka
{\pretitle \title \posttitle}
\maketitlehookb
{\preauthor \author \postauthor}
\maketitlehookc
{\predate \date \postdate}
\maketitlehookd
\thispagestyle{title}

61

4. TITLES

Typeset Example 4.1: Example \maketitle title

MEANDERINGS

T. H. E. River and A. Wanderer'
Dun Roamin Institute, NY

1 April 1993"

* Supported by a grant from the R. Ambler’s Fund
* First drafted on 29 February 1992

where the title pagestyle is initially the same as the plain pagestyle. The various macros
used within \maketitle are described below.

\pretitle{(text)} \posttitle{(text)}
\preauthor{(text)} \postauthor{(text)}
\predate{(text)} \postdate{(text)}

These six commands each have a single argument, (text), which controls the typesetting
of the standard elements of the document’s \maketitle command. The \title is effec-
tively processed between the \pretitle and \posttitle commands; that is, like:

{\pretitle \title \posttitle}

and similarly for the \author and \date commands. The commands are initialised to
mimic the normal result of \maketitle typesetting in the report class. That is, the default
definitions of the commands are:

\pretitle{\begin{center}\LARGE}
\posttitle{\par\end{center}\vskip 0.5em}
\preauthor{\begin{center}

\large \lineskip 0.5em}

\begin{tabular}[t]{c}}
\postauthor{\end{tabular}\par\end{center}}
\predate{\begin{center}\large}
\postdate{\par\end{center}}

They can be changed to obtain different effects. For example to get a right justified
sans-serif title and a left justifed small caps date:

\pretitle{\begin{flushright}\LARGE\sffamily}
\posttitle{\par\end{flushright}\vskip 0.5em}
\predate{\begin{flushleft}\large\scshape}
\postdate{\par\end{flushleft}}

62

4.1. Styling the titling

| \droptitle \

The \maketitle command puts the title at a particular height on the page. You can
change the vertical position of the title via the length \droptitle. Giving this a posi-
tive value will lower the title and a negative value will raise it. The default definition is:

\setlength{\droptitle}{Opt}

\maketitlehooka \maketitlehookb
\maketitlehookc \maketitlehookd

These four hook commands are provided so that additional elements may be added to
\maketitle. These are initially defined to do nothing but can be renewed. For exam-
ple, some publications want a statement about where an article is published immediately
before the actual titling text. The following defines a command \published that can
be used to hold the publishing information which will then be automatically printed by
\maketitle.

\newcommand{\published} [1]{%
\gdef\puB{#1}}

\newcommand{\puB}{}

\renewcommand{\maketitlehooka}{/,
\par\noindent \puB}

You can then say:

\published{Originally published in
\textit{The Journal of ...}\thanks{Reprinted with permission}}

\maketitle
to print both the published and the normal titling information. Note that nothing extra had
to be done in order to use the \thanks command in the argument to the new \published
command.

\begin{titlingpagel} text \end{titlingpage}
\begin{titlingpagex*} text \end{titlingpagex*}

\titlingpageend{(twoside code)}{{oneside code)}
\settitlingpagenumbering{(macro to be given a counter name)}

When one of the standard classes is used with the titlepage option, \maketitle puts the
title elements on an unnumbered page and then starts a new page numbered page 1. The
standard classes also provide a titlepage environment which starts a new unnumbered
page and at the end starts a new page numbered 1. You are entirely responsible for speci-
fying exactly what and where is to go on this title page. If \maketitle is used within the
titlepage environment it will start yet another page.

This class provides neither a titlepage option nor a titlepage environment; instead
it provides the titlingpage environment which falls between the titlepage option and
the titlepage environment. Within the titlingpage environment you can use the
\maketitle command, and any others you wish. The titlingpage pagestyle is used, and
at the end it starts another ordinary page numbered one (\begin{titlingpage*J} does

63

4. TITLES

note reset the page number). The titlingpage pagestyle is initially defined to be the same
as the empty pagestyle.

At the end of a titlingpage clearing code is issued, which can send you to
the next page or the next right handed page. Using \titlingpageend{(twoside
code) }{ (oneside code)}, you can specify what this clearing code should be. The default
is \cleardoublepage and \clearpage respectively.” However a better choice might be
to just let it follow \clearforchapter:

\titlingpageend{\clearforchapter}{\clearforchapter}

- using this value, titlingpage will work as expected with openany.
For example, to put both the title and an abstract on a title page, with a plain pagestyle:

\begin{document}

\begin{titlingpage}
\aliaspagestyle{titlingpage}{plain}
\setlength{\droptitle}{30pt} lower the title
\maketitle

\begin{abstract}...\end{abstract}
\end{titlingpage}

However, it is not required to use \begin{titlingpagel} to create a title page, you
can use regular LaTeX typesetting without any special environment. That is like:
\pagestyle{empty}
%%% Title, author, publisher, etc., here
\cleardoublepage

By default, titling information is centered with respect to the width of the typeblock.
Occasionally someone asks to center the titling information on a title page with respect to
the width of the physical page. If the typeblock is centered with respect to the physical
page, then the default centering suffices. If the typeblock is not physically centered, then
the titling information either has to be shifted horizontally or \maketitle has to be made
to think that the typeblock has been shifted horizontally. The simplest solution is to use
the \calccentering and adjustwidth* command and environment. For example:

\begin{titlingpage}
\calccentering{\unitlength}
\begin{adjustwidth*}{\unitlength}{-\unitlength}
\maketitle
\end{adjustwidthx*}
\end{titlingpage}

The macro \settitlingpagenumbering canbe used to control how \thepage is con-

figured inside a titlingpage. By default we cannot see any page numbers, but hyperref
can, and we often see this warning:

pdfTeX warning (ext4): destination with the same identifier (name{page.1}) has
been already used, duplicate ignored

2Thus this refactorization will not change existing documents, LM, 2018/03/06.

64

4.1. Styling the titling

This is because hyperref does make targets on each page and it uses the current value of
\thepage. So the first page of the title page and the first page of the document now have
the same identifier. You can get rid of this using say

\settitlingpagenumbering{\Alph}

The default is \arabic. It just needs to be a macro that takes one argument, which will be
given the name of a counter, here page.

\title{(text)} \thetitle
\author{(text)} \theauthor
\date{(text)} \thedate

In the usual document classes, the contents ({text)) of the \title, \author and \date
macros used for \maketitle are unavailable once \maketitle has been issued. The
class provides the \thetitle, \theauthor and \thedate commands that can be used
for printing these elements of the title later in the document, if desired.

| \and \andnext \

The macro \and is used within the argument to the \author command to add some extra
space between the author’s names. The class \andnext macro inserts a newline instead
of a space. Within the \theauthor macro both \and and \andnext are replaced by a
comma.

The class does not follow the standard classes” habit of automatically killing the titling
commands after \maketitle has been issued. You can have multiple \title, \author,
\date and \maketitle commands in your document if you wish. For example, some
reports are issued with a title page, followed by an executive summary, and then they
have another, possibly modified, title at the start of the main body of the report. This can
be accomplished like this:

\title{Cover title}
\begin{titlingpage}

\maketitle
\end{titlingpage}

\title{Body title}
\maketitle

\killtitle \keepthetitle
\emptythanks

The \killtitle macro makes all aspects of titling, including \thetitle etc., unavailable
from the point that it is issued (using this command will save some macro space if the
\thetitle, etc., commands are not required). Using this command is the class’s manual
version of the automatic killing performed by the standard classes. The \keepthetitle
command performs a similar function, except that it keeps the \thetitle, \theauthor
and \thedate commands, while killing everything else.

The \emptythanks command discards any text from prior use of \thanks. This com-
mand is useful when \maketitle is used multiple times — the \thanks commands

65

4. TITLES

in each use just stack up the texts for output at each use, so each subsequent use of
\maketitle will output all previous \thanks texts together with any new ones. To avoid
this, put \emptythanks before each \maketitle after the first.

4.2 STYLING THE THANKS

The class provides a configurable \thanks command.

\thanksmarkseries{(format)}
\symbolthanksmark

Any \thanks are marked with symbols in the titling and footnotes. The command
\thanksmarkseries can be used to change the marking style. The (format) argument
is the name of one of the formats for printing a counter. The name is the same as that of a
counter format but without the backslash. To have the \thanks marks as lowercase letters
instead of symbols do:

\thanksmarkseries{alph}

Just for convenience the \symbolthanksmark command sets the series to be footnote sym-
bols. Using this class the potential names for (format) are: arabic, roman, Roman, alph,
Alph, and fnsymbol.

[\continuousmarks \

The \thanks command uses the footnote counter, and normally the counter is zeroed
after the titling so that the footnote marks start from 1. If the counter should not be zeroed,
then just specify \continuousmarks. This might be required if numerals are used as the
thanks markers.

| \thanksheadextra{(pre) H(post)} \

The \thanksheadextra command will insert (pre) and (post) before and after the thanks
markers in the titling block. By default (pre) and (post) are empty. For example, to put
parentheses round the titling markers do:

\thanksheadextra{(}{)}

| \thanksmark{(n)} |

It is sometimes desireable to have the same thanks text be applied to, say, four out of
six authors, these being the first 3 and the last one. The command \thanksmark{(n)?} is
similar to \footnotemark [(n)] in that it prints a thanks mark identical to that of the (1n)’th
\thanks command. No changes are made to any thanks in the footnotes. For instance, in
the following the authors Alpha and Omega will have the same mark:

\title{The work\thanks{Draft}}
\author{Alpha\thanks{ABC},
Beta\thanks{XYZ} and
Omega\thanksmark{2}}
\maketitle

| \thanksmarkstyle{(defn)} ‘

By default the thanks mark at the foot is typeset as a superscript. In the class this is specifed
via

66

4.2. Styling the thanks

\thanksmarkstyle{#1}

where #1 will be replaced by the thanks mark symbol. You can change the mark styling if
you wish. For example, to put parentheses round the mark and typeset it at normal size
on the baseline:

\thanksmarkstyle{ (#1)}

| \thanksmarkwidth \

The thanks mark in the footnote is typeset right justified in a box of width
\thanksmarkwidth. The first line of the thanks text starts after this box. The initialisation
is

\setlength{\thanksmarkwidth}{1.8em}

giving the default position.

| \thanksmarksep \

The value of the length \thanksmarksep controls the indentation the second and sub-
sequent lines of the thanks text, with respect to the end of the mark box. As examples:

\setlength{\thanksmarksep}{Oem}
will align the left hand ends of of a multiline thanks text, while:
\setlength{\thanksmarksep}{-\thanksmarkwidth}

will left justify any second and subsequent lines of the thanks text. This last setting is the
initialised value, giving the default appearance.

| \thanksfootmark \

A thanks mark in the footnote region is typeset by \thanksfootmark. The code for this
is roughly:
\newcommand{\thanksfootmark}{/,
\hbox to\thanksmarkwidth{\hfil\normalfont
\thanksscript{\thefootnote}}}

You should not need to change the definition of \thanksfootmark but you may want to
change the default definitions of one or more of the macros it uses.

| \thanksscript{{text)} \
This is initially defined as:

\newcommand{\thanksscript}[1]{#1}

so that \thanksscript typesets its argument as a superscript, which is the default for
thanks notes.

\makethanksmark
\makethanksmarkhook

The macro \makethanksmark typesets both the thanks marker (via \thanksfootmark)
and the thanks text. You probably will not need to change its default definition. Just in
case, though, \makethanksmark calls the macro \makethanksmarkhook before it does
any typesetting. The default definition of this is:

67

4. TITLES

\newcommand{\makethanksmarkhook}{}

which does nothing.
You can redefine \makethanksmarkhook to do something useful. For example, if you
wanted a slightly bigger baseline skip you could do:

\renewcommand{\makethanksmarkhook}{\fontsize{8}{11}\selectfont}

where the numbers 8 and 11 specify the point size of the font and the baseline skip respec-
tively. In this example 8pt is the normal \footnotesize in a 10pt document, and 11pt is
the baselineskip for \footnotesize text in an 11pt document (the normal baseline skip
for \footnotesize in a 10pt document is 9.5pt); adjust these numbers to suit.

\thanksrule
\usethanksrule
\cancelthanksrule

By default, there is no rule above \thanks text that appears in a titlingpage en-
vironment. If you want a rule in that environment, put \usethanksrule before the
\maketitle command, which will then print a rule according to the current defini-
tion of \thanksrule. \thanksrule is initialised to be a copy of \footnoterule
as it is defined at the end of the preamble. The definition of \thanksrule can be
changed after \begin{document}. If the definition of \thanksrule is modified and
a \usethanksrule command has been issued, then the redefined rule may also be
used for footnotes. Issuing the command \cancelthanksrule will cause the normal
\footnoterule definition to be used from thereon; another \usethanksrule command
can be issued later if you want to swap back again.

The parameters for the vertical positioning of footnotes and thanks notes, and the de-
fault \footnoterule are the same (see Figure 12.1 on page 241). You will have to change
one or more of these if the vertical spacings of footnotes and thanks notes are meant to be
different.

68

Five

Abstracts

Abstracts do not normally appear in books but they are often an essential part of an article
in a technical journal. Reports may or may not include an abstract, but if so it will often
be called a ‘Summary’. There may be an even shorter abstract as well, often called an
‘Executive Summary’, for those who feel that details are irrelevant.

In the standard classes appearance of the abstract environment is fixed. The class
provides a set of controls adjusting the appearance of an abstract environment.

Questions about how to have a one-column abstract in a two-column paper seem to
pop up fairly regularly on the comp.text.tex newsgroup. While an answer based on
responses on CTT is provided in the FAQ, the class provides a more author-friendly means
of accomplishing this.

5.1 STYLING

Much of this part of the class is a reimplementation of the abstract package [?].
The typeset format of an abstract in a report or article class document depends on
the class options.! The formats are:

e titlepage class option: The abstract heading (i.e., value of \abstractname) is typeset
centered in a bold font; the text is set in the normal font and to the normal width.

¢ twocolumn class option: The abstract heading is typeset like an unnumbered section;
the text is set in the normal font and to the normal width (of a single column).

¢ Default (neither of the above class options): The abstract heading is typeset centered
in a small bold font; the text is set in a small font and indented like the quotation
environment.

This class provides an abstract environment and handles to modify the typesetting
of an abstract.

| \begin{abstract} text \end{abstract} \

There is nothing special about using the abstract environment. Formatting is controlled
by the macros described below.

\abstractcol
\abstractintoc
\abstractnum
\abstractrunin

IThe abstract environment is not available for the book class.

69

5. ABSTRACTS

The normal format for an abstract is with a centered, bold title and the text in a small
font, inset from the margins.

The \abstractcol declaration specifies that an abstract in a twocolumn class
option document should be typeset like a normal, unnumbered chapter. The
\abstractintoc specifies that the abstract title should be added to the ToC. The declara-
tion \abstractnum specifies that the abstract should be typeset like a numbered chapter
and \abstractrunin specifies that the title of the abstract should look like a run-in head-
ing; these two declarations are mutually exclusive. Note that the \abstractnum declara-
tion has no effect if the abstract is in the \frontmatter.

\abstractname
\abstractnamefont
\abstracttextfont

\abstractname (default ‘Abstract’) is used as the title for the abstract environment
and is set using the \abstractnamefont. The body of the abstract is typeset using the
\abstracttextfont. These two commands can be redefined to change the fonts if you
wish. The default definitions are

\newcommand{\abstractnamefont}{\normalfont\small\bfseries}
\newcommand{\abstracttextfont}{\normalfont\small}

\absleftindent \absrightindent
\absparindent \absparsep

This version of abstract uses a 1ist environment for typesetting the text. These four
lengths can be changed (via \setlength or \addtolength) to adjust the left and right
margins, the paragraph indentation, and the vertical skip between paragraphs in this en-
vironment. The default values depend on whether or not the twocolumn class option is
used. The general layout parameters for lists are illustrated in Figure 8.2.

Caveat. The default values for \absparindent and \absparsep are \parindent and
\parskip. But, since users may change these values in the preamble, we delay setting
\absparindent and \absparsep to the beginning of the document. Thus if you want
to change these values remember to use

\AtBeginDocument{
\setlength{\absparindent}{...}
\setlength{\absparsep}{...}

}

| \abslabeldelim{(text)} |

If the \abstractrunin declaration has been given, the heading is typeset as a run-in
heading. That is, it is the first piece of text on the first line of the abstract text. The (fext)
argument of \abslabeldelim is typeset immediately after the heading. By default it is
defined to do nothing, but if you wanted, for example, the \abstractname to be followed
by a colon and some extra space you could specify

\abslabeldelim{:\quad}

| \absnamepos

70

5.2. One column abstracts

If the \abstractrunin declaration is not used then the heading is typeset in its own
environment, specified by \absnamepos. The default definition is

\newcommand{\absnamepos}{center}

It can be defined to be one of f1lushleft, center, or flushright to give a left, centered
or right aligned heading; or to any other appropriate environment which is supported by
a used package.

[\abstitleskip \

With the \abstractrunin declaration a horizontal space of length \abstitleskip is
typeset before the heading. For example, if \absparindent is non-zero, then:

\AtBeginDocument{
\setlength{\abstitleskip}{-\absparindent}
}

will typeset the heading flush left (we have to delay as the value of \absparindent is
zero in the preamble and is set at the start of the doc).

Without the \abstractrunin declaration, \abstitleskip is aditional vertical space
(either positive or negative) that is inserted between the abstract name and the text of the
abstract.

5.2 ONE COLUMN ABSTRACTS

The usual advice [?] about creating a one-column abstract in a twocolumn document is
to write code like this:

\documentclass[twocolumn...]{...}

\twocolumn [
\begin{@twocolumnfalse}
\maketitle need full-width title
\begin{abstract}
abstract text...
\end{abstract}
\end{@twocolumnfalse}

. hand make footnotes for any \thanks commands

\begin{onecolabstract} text \end{onecolabstract}
\saythanks

The class provides a onecolabstract environment that you can use for a one column
abstract in a twocolumn document, and it is used like this:

\documentclass[twocolumn. ..]{memoir}

\twocolumn[
\maketitle need full-width title
\begin{onecolabstract}

71

5. ABSTRACTS

abstract text...
\end{onecolabstract}
]
\saythanks % typesets any \thanks commands

The command \saythanks ensures that any \thanks texts from an earlier \maketitle
are printed out as normal.

If you want, you can use the onecolabstract environment in place of the abstract
environment — it doesn’t have to be within the optional argument of the \twocolumn
command. In fact, onecolabstract internally uses abstract for the typesetting.

72

Document divisions

For this chapter the pedersen chapterstyle has been used in order to demonstrate how it
appears.

In this chapter I first discuss the various kinds of divisions within a book and the com-
mands for typesetting these.

After that I describe the class methods for modifying the appearance of the chapter and
other sectional titles (subheads). The facilities described here provide roughly the same as
you would get if you used the titlesec [?] and sectsty [?] packages together; the commands
are different, though.

6.1 LOGICAL DIVISIONS

As described earlier there are three main logical divisions to a book; the front matter,
main matter and back matter. There are three LaTeX commands that correspond to these,
namely \frontmatter, \mainmatter and \backmatter.

| \frontmatter \frontmatterx \

The \frontmatter declaration sets the folios to be printed in lowercase roman numer-
als, starts the page numbering from i, and prohibits any numbering of sectional divisions.
Caption, equations, etc., will be numbered continuously. The starred version of the com-
mand, \frontmatter, is similar to the unstarred version except that it makes no changes
to the page numbering or the print style for the folios. Even though \chapter and other
divisions will not be numbered their titles will be added to the ToC.

If it is to be used at all, the \frontmatter declaration should come before any text is
set, otherwise the pagination scheme will be in disarray (in books pagination starts on the
first page).

| \mainmatter \mainmatterx \

The \mainmatter declaration, which is the default at the start of a document, sets the
folios to be printed in arabic numerals, starts the page numbering from 1, and sections and
above will be numbered. Float captions, equations, etc., will be numbered per chapter.
The starred version of the command, \mainmatterx, is similar to the unstarred version
except that it makes no changes to the page numbering or the print style for the folios.

Please note that \mainmatter will not only change the folio numbers to arabic and
restart it at 1, it will also make sure it starts at the next coming recto page. (Even when
running under the openany option).

| \backmatter \

The \backmatter declaration makes no change to the pagination or folios but does pro-
hibit sectional division numbering, and captions, etc., will be numbered continuously.

If you have other types of floats that might be used in the front- main- or backmatter, then
you can change some internals to add these to be numbered in the same manner as we do
with figures and tables. They are defined as

\newcommand\@memfront@floats{y
\counterwithout{figure}{chapter}

73

6. DOCUMENT DIVISIONS

\counterwithout{table}{chapter}}
\newcommand\@memmain@floats{/
\counterwithin{figure}{chapter}
\counterwithin{table}{chapter}}
\newcommand\@memback@floats{%
\counterwithout{figure}{chapter}
\counterwithout{table}{chapter}
\setcounter{figure}{0}
\setcounter{table}{0}}

The macros can also be changed in case you want to have consecutive figure numbering
throughout, i.e.,

\makeatletter
\counterwithout{figure}{chapter}
\counterwithout{table}{chapter}
\renewcommand\@memfront@floats{}
\renewcommand\@memmain@floats{}
\newcommand\@memback@floats{}
\makeatother

in the preamble.

6.2 SECTIONAL DIVISIONS

The memoir class lets you divide a document up into eight levels of named divisions.
They range from book, part through chapter and down to sub-paragraph. A particular sec-
tional division is specified by one of the commands \book, \part, \chapter, \section,
\subsection, which is probably as deep as you want to go. If you really need finer divi-
sions, they are \subsubsection, \paragraph and lastly \subparagraph. The sectional
commands, except for \book and \part, have the same form, so rather than describing
each one in turn I will use \section as model for all but the two exceptions.

\section[(toc-title)] [(head-title)] {(title)}
\section*{(title)}

There are two forms of the command; the starred version is simpler, so I'll describe
its effects first — it just typesets (title) in the document in the format for that particular
sectional division. Like the starred version, the plain version also typesets (title) in the
document, but it may be numbered. Diferent forms of the division title are available for
the Table of Contents (ToC) and a running header, as follows:

* No optional argument: (title) is used for the division title, the ToC title and a page

header title.

* One optional argument: (title) is used for the division title; (toc-title) is used for the
ToC title and a page header title.

e Two optional arguments: (title) is used for the division title; (foc-title) is used for the
ToC title; (head-title) is used for a page header title.
A \section command restarts the numbering of any \subsections from one. For
most of the divisions the (title) is put on the page where the command was issued. The
\book, \part and \chapter commands behave a little differently.

74

6.2. Sectional divisions

The \book and \part commands are simpler and both behave in the same way.

\book [{toc and head)] {(title) }
\part [(toc and head)] {(title)}

The \book{(title)} command puts the book name (default Book), number and (title) on
a page by itself. The numbering of books has no effect on the numbering of \parts or
\chapters. Similarly the \part{(title)} command puts the part name (default Part),
number and (title) on a page by itself. The numbering of parts has no effect on the num-
bering of \chapters. The optional argument can be used to send something different to
the ToC.!

Later I'll give a list of LaTeX’s default names, like Part.

\chapter [(toc-title)] [(head-title)] {(title) }
\chapterx [(head-title)] {(title)}

The \chapter command starts a new page and puts the chapter name (default
Chapter), number and (title) at the top of the page. It restarts the numbering of any
\sections from one. If no optional arguments are specified, (title) is used as the ToC en-
try and for any page headings. If one optional argument is specified this is (toc-title) and
is used for the ToC entry and for page headings. If both optional arguments are specified
the (head-title) is used for page headings.

The \chapter* command starts a new page and puts (title) at the top of the page. It
makes no ToC entry, changes no numbers and by default changes no page headings. If the
optional (head-title) argument is given, this is used for page headings. Use of the optional
argument has the side-effect that the secnumdepth counter is set to maxsecnumdepth (see
below for an explanation of these).

When the article option is in effect, however, things are slightly different. New chapters
do not necessarily start on a new page. The \mainmatter command just turns on sectional
numbering and starts arabic page numbering; the \backmatter command just turns off
sectional numbering. The \tableofcontents command and friends, as well as any other
commands created via \newlistof, always® call thispagestyle{chapter}. If you are
using the article option you will probably want to ensure that the chapter pagestyle is the
same as you normally use for the document.

Unlike the standard classes the (title) is typeset ragged right. This means that if you
need to force a linebreak in the (title) you have to use \newline instead of the more usual
\\. For instance

\section{A broken\newline title}

In the standard classes a \section or other subhead that is too close to the bottom of
a page is moved to the top of the following page. If this happens and \flushbottom is
in effect, the contents of the short page are stretched to make the last line flush with the
bottom of the typeblock.

\raggedbottomsection
\normalbottomsection
\bottomsectionskip
\bottomsectionpenalty

T And header, though this is rarely used.
2This is a consequence of the internal timing of macro calls.

75

6. DOCUMENT DIVISIONS

The \raggedbottomsection declaration will typeset any pages that are short because
of a moved subhead as though \raggedbottom was in effect for the short page; other
pages are not affected. The length \bottomsectionskip controls the amount of stretch
on the short page. Setting it to zero allows the last line to be flush with the bot-
tom of the typeblock. The default setting of 10mm appears to remove any stretch.
\bottomsectionpenalty control the penalty it costs to make a page break at this point.
The detault is zero as the stretch is usually enough, by setting it to a negative integer one
can be a bit more incouraging regarding a possible page break.

The declaration \normalbottomsection, which is the default, cancels any previous
\raggedbottomsection declaration.

6.2.1 Appendices

Appendices normally come after the main text and are often considered to be part of the
\mainmatter as they are normally numbered (the \backmatter declaration turns off all
sectional numbering).

\appendix
\appendixname

The \appendix declaration changes the numbering of chapters to an alphabetic form and
also changes the names of chapters from \chaptername (default Chapter) to the value
of \appendixname (default Appendix). Thus, the first and any subsequent \chapters
after the \appendix command will be ‘Appendix A ...’, “Appendix B ...”, and so on.
That is as far as the standard classes go but this class provides more ways of dealing with
appendices.

\appendixpage
\appendixpage*
\appendixpagename

The \appendixpage command generates a part-like page (but no name or number) with
the title given by the value of \appendixpagename (default Appendices). It also makes
an entry in the ToC using \addappheadtotoc (see below). The starred version generates
the appendix page but makes no ToC entry.

\addappheadtotoc
\appendixtocname

The command \addappheadtotoc adds an entry to the ToC. The title is given by the value
of \appendixtocname (default Appendices).

| \begin{appendices} text \end{appendices} \

The appendices environment acts like the \appendix command in that it resets the num-
bering and naming of chapters. However, at the end of the environment, chapters are re-
stored to their original condition and any chapter numbers continue in sequence as though
the appendices environment had never been there.

\begin{subappendices} text \end{subappendices}
\namedsubappendices \unnamedsubappendices

The subappendices environment can be used to put appendices at the end of a chap-
ter. Within the environment \section starts a new sub-appendix. You may put

76

6.3. Numbering

Table 6.1: Division levels

Division Level

\book 2
\part -
\chapter

\section
\subsection
\subsubsection
\paragraph
\subparagraph

G WODN Rk O

\addappheadtotoc at the start of the environment if you want a heading entry in the
ToC. If you put the declaration \namedsubappendices before the subappendices envi-
ronment, the sub-appendix number in the body of the document will be preceded by the
value of \appendixname. The \unnamedsubappendices declaration, which is the de-
fault, may be used to switch off this behaviour.

Caveat. The implementation of the named subappendices make use of
\setsecnumformat, thus if you have used this command to change the format-
ing of the section number you will need to re-do this in a special manner inside the
subappendices environemt. Something like this (where a user wanted to use old style
numerials for sectioning numbers)

\begin{subappendices}
\setsecnumformat{\sectionname\
\oldstylenums{\csname the#1l\endcsname\quadl}}

The macro sectionname is a special macro that only lives inside the subappendices
environment and is only available when \namedsubappendices is applied.

6.3 NUMBERING

Each type of sectional division has an associated level as shown in Table 6.1. Divisions are
numbered if the value of the secnumdepth counter is equal to or greater than their level.
For example, with

\setcounter{secnumdepth}{2}

then subsections up to book will be numbered.

\setsecnumdepth{(secname)}
\maxsecnumdepth{(secname)}

Instead of having to remember the levels if you want to change what gets numbered you
can use the \setsecnumdepth command. It sets secnumdepth so that divisions (secname)
and above will be numbered. The argument (secname) is the name of a sectional division
without the backslash. For example, to have subsections and above numbered:

77

6. DOCUMENT DIVISIONS

\setsecnumdepth{subsection}

You can also use all or none for (secname) which will either turn on numbering for all
levels, or turn off numbering altogether.

When used in the preamble \setsecnumdepth also calls \maxsecnumdepth, which is
the numbering level used once \mainmatter is called. You can use \setsecnumdepth
anywhere in the \mainmatter to (temporarily) change the numbering level.

By default, the class sets:

\setsecnumdepth{section}
\maxsecnumdepth{section}

The \frontmatter commands sets the numbering level to none. The commands
\mainmatter and \mainmatter* set the numbering level to the value specified by
\maxsecnumdepth.

Hint. One will often set \setsecnumdepth in the preamble and then wonder why it didn’t do
anything. That is probably because of \frontmatter and mainmatter, so make it a habit of
setting them both like above.

The number setting commands come from the tocvsec2 package [?].

6.4 BOOK AND PART HEADINGS

Book and part headings always start on a new page with the book and part pagestyles,
respectively. The typical book and part heading consists of the name (e.g., ‘Book’ or ‘Part’)
followed by a number represented as an uppercase Roman numeral. There is a vertical
space after which the title is printed. Finally a new page is started.

Several aspects of the typesetting of the \book and \part title are configurable. Ignor-
ing details, such as the optional argument, the code for printing \part headings looks like
this:

\newcommand{\part}[1]1{% % THIS IS A VERY SIMPLIFIED VERSION

\cleardoublepage % start a new recto page
\thispagestyle{part} % set the page style
\beforepartskip % space before Name and Number
\printpartname\partnamenum\printpartnum
\midpartskip % space after Name and Number
\printparttitle{#1} % print the title
\partpageend} % finish off
\newcommand{\partpageend}{’ THIS IS SIMPLIFIED
\afterpartskip

% ifblankpage then blank next page and restore twocolumn if necessary

}

The code for \book headings is similar.

The general layout for \book, \part and \chapter headings is similar and you may
wish to refer to Figure 6.1 which, although it shows the vertical layout for a chapter head,
is also applicable to \book and \part heads with appropriate changes in the names of the
commands.

78

6.4. Book and part headings

\beforebookskip \afterbookskip
\beforepartskip \afterpartskip

These commands effectively control the spacing before and after the book and part titles.
Their default definitions are:

\newcommand*{\beforebookskip}{\null\vfil}
\newcommand*{\afterbookskip}{\vfil\newpagel}
\newcommand*{\beforepartskip}t{\null\vfil}
\newcommand*{\afterpartskip}{\vfil\newpage}

Together, these vertically center any typesetting on the page, and then start a new page. To
move the \part title upwards on the page, for example, you could do:

\renewcommand*{\beforepartskip}{\null\vskip Opt plus 0.3fil}
\renewcommand*{\afterpartskip}{\vskip Opt plus 0.7fil \newpagel}

\midbookskip
\midpartskip

The macros \midbookskip and \midpartskip are the spacings between the number
lines and the titles. The default definitions are:

\newcommand{\midbookskip}{\par\vspace 2\onelineskip}
\newcommand{\midpartskip}{\par\vspace 2\onelineskip}

and they can be changed.

\printbookname \booknamefont
\booknamenum

\printbooknum \booknumfont
\printpartname \partnamefont
\partnamenum

\printpartnum \partnumfont

The macro \printbookname typesets the book name (the value of \bookname) us-
ing the font specified by \booknamefont. The default is the \bfseries font in the
\huge size. Likewise the book number is typeset by \printbooknum using the font
specified by \booknumfont, which has the same default as \booknamefont. The macro
\booknamenum, which is defined to be a space, is called between printing the book name
and the number. All these can be changed to obtain different effects.

Similarly, the macro \printpartname typesets the part name (the value of
\partname) using the font specified by \partnamefont. The default is the \bfseries
font in the \huge size. Likewise the part number is typeset by \printpartnum using the
font specified by \partnumfont, which has the same default as \partnamefont. The
macro \partnamenum, which is defined to be a space, is called between printing the part
name and the number.

For example, to set a \part in a large sans font with the part name flush left:

\renewcommand{\partnamefont}{\normalfont\huge\sffamily\raggedright}
\renewcommand{\partnumfont}{\normalfont\huge\sffamily}

or to only print the part number in the default font:

79

6. DOCUMENT DIVISIONS

\renewcommand{\printpartname}{}
\renewcommand{\partnamenum}{}

\printbooktitle{(title)} \booktitlefont
\printparttitle{(title)} \parttitlefont

A book’s title is typeset by \printbooktitle using the font specified by
\booktitlefont. By default this is a \bfseries font in the \Huge size. This can
be changed to have, say, the title set raggedleft in a small caps font by

\renewcommand{\booktitlefont}{\normalfont\Huge\scshape\raggedleft}
Similarly a part’s title is typeset by \printparttitle using the font specified by
\parttitlefont. By default this is a \bfseries font in the \Huge size.

The \parttitlefont font is also used by \appendixpage, or its starred version,
when typesetting an appendix page.

\bookpagemark{ (title)}
\partmark{(title)}

The \book code includes \bookpagemark{(title)} for capturing the (title) of the book di-
vision if it is going to be used, for example, in page headers. Its definition is simply:

\newcommand*{\bookpagemark} [1]{}

There is the corresponding \partmark for the title of \part divisions.

\bookpageend \bookblankpage \nobookblankpage
\partpageend \partblankpage \nopartblankpage

The macro \bookpageend finishes off a book title page. It first calls \afterbookskip.
If the \nobookblankpage is in effect it does nothing more. If the declaration
\bookblankpage (the default) is in effect then it finishes the current page, outputs a blank
page and then, if twocolumn typesetting was in effect before \book then it restores twocol-
umn typesetting. The macro \partpageend performs similar functions for \part pages.

So to add something on the back side of a \part page (assuming twoside) use some-
thing similar to

\nopartblankpage

\part{Title of the Part}
\thispagestyle{simple}

Text on the following (normally blank page)
\clearpage

Alternatively you can redefine \partpageend.

If you use the declaration \nopartblankpage (or \nobookblankpage) then you are
responsible for setting everything correctly to end off the \part (or \book) page. This is
the default definition of \partpageend (that for \bookpageend is similar):

\newcommand{\partpageend}{/

\afterpartskip
\ifm@mnopartnewpage), set by \(no)partblankpage
\else% default finish off

80

6.4. Book and part headings

\if@twoside
\if@openright}, output blank page
\null
\thispagestyle{afterpartl}’
\newpage
\fi
\fi
\fi
\if@tempswa)% true if twocolumn was being used
\twocolumn
\fi}
Here with the default definitions, \afterpartskip ends off the \part page, and then
the rest of the code in \partpageend takes care of typesetting the blank back side of the
\part page (or send us back to twocolumn mode).
If on the other hand we actually want to write something below the part title on the
\part page, then we need a different route. The “air’ above and below the part title is by
default defined as

\newcommand*{\beforepartskip}{\null\vfil}
\newcommand*{\afterpartskip}{\vfil\newpage}

Thus we need to redefined this such that it does not change the page and such that it add
useful spacing above and below the part titling. Something like this may do the trick
\makeatletter
\newcommand*{\beforepartskip}{\null\vskip4cm}
\newcommand*{\afterpartskip}{\par\vskipicmy
\@afterindentfalse\@afterheading}
\makeatother

6.4.1 Leadpage

\newleadpage [(page-style)]{(cmdname) }{(title)}
\renewleadpage [(page-style)] {{cmdname) }{(title)}

The \newleadpage® command defines a macro \cmdname that when called will typeset an
Appendixpage-like page (see §6.2.1) with a title (title) using the (page-style) as the pagestyle
for the page. The default is the empty pagestyle. The macro \renewleadpage redefines
an existing leadpage command. \cmdname will add an entry to the TOC, the similarly
defined \ cmdname* will not.

As an example:

\newleadpage{plates}{Picture Gallery}

creates the new command \plates which when called generates an unnumbered part-like
page with the title Picture Gallery.

| \leadpagetoclevel \

When \ (re)newleadpage is used the resulting command adds (title) to the ToC as though
it was an unnumbered \leadpagetoclevel entry, whose definition is

3The suggestions for this came from Danie Els and Lars Madsen.

81

6. DOCUMENT DIVISIONS

\newcommand*{\leadpagetoclevel}{chapter}
If you wished them to be entered like a \part header then simply:
\renewcommand*{\leadpagetoclevel}{part}

The layout of the page matches that for unnumbered \part pages, and internally the
resulting commands use \partmark in case you wish to capture the (title) to use in run-
ning headers.

6.5 CHAPTER HEADINGS

The chapter headings are configurable in much the same way as book or part headings,
but in addition there are some built in chapter styles that you may wish to try, or define
your own.

Chapters, except when the article class option is used, always start on a new page with
the chapter pagestyle. The particular page, recto or verso, that they start on is mainly
controlled by the class options. If the oneside option is used they start on the next new
page, but if the twoside option is used the starting page may differ, as follows.

openright The chapter heading is typeset on the next recto page, which may leave a blank verso
leaf.

openleft The chapter heading is typeset on the next verso page, which may leave a blank recto
leaf.

openany The chapter heading is typeset on the next page and there will be no blank leaf.

| \openright \openleft \openany \

These three declarations have the same effect as the options of the same name. They can
be used anywhere in the document to change the chapter opening page.

Ignoring many details, like the optional arguments, the code for printing a \chapter
heading is similar to that for \book and \part (the \chapterhead command below is not

part of the class).

\newcommand{\chapterhead}[1]{ % THIS IS A SIMPLIFIED VERSION
\clearforchapter % move to correct page
\thispagestyle{chapter} 7 set the page style
\insertchapterspace % Inserts space into LoF and LoT
\chapterheadstart % \beforechapskip space before heading
\printchaptername\chapternamenum\printchapternum
\afterchapternum % \midchapskip space between number and title
\printchaptertitle{#1} 7 title
\afterchaptertitle} % \afterchapskip space after title

The general layout is shown in Figure 6.1.

| \clearforchapter |

The actual macro that sets the opening page for a chapter is \clearforchapter.
The class options openright, openleft and openany (or their macro equivalents
\openright, \openleft and \openany) define \clearforchapter to be respectively
(see §18.13) \cleartorecto, \cleartoverso and \clearpage. You can obviously
change \clearforchapter to do more than just start a new page.

82

6.5. Chapter headings

____ top of the typeblock

\beforechapskip + \baselineskip + \topskip

Chapter 3

\midchapskip + \baselineskip

The title

\afterchapskip + \baselineskip

his is the start of the after-heading text which continues on ...
second line of text following the heading ...

Figure 6.1: Class layout parameters for chapter titles. Working with \beforechapskip
need a little thought, see the text.

| \memendof chapterhook \

Where \clearforchapter comes at the very beginning, \memendof chapterhook comes
at the very end of the \chapter command. It does nothing by default, but could be rede-
fined to insert, say, \clearpage:

\makeatletter

\renewcommand\memendof chapterhook{’,
\clearpage\m@mindentafterchapter\Q@afterheading}

\makeatother

Some books have the chapter headings on a verso page, with perhaps an illustration or
epigraph, and then the text starts on the opposite recto page. The effect can be achieved
like:

\openleft % chapter title on verso page
\chapter{The title} % chapter title

\begin{centering} % include a centered illustration
\includegraphics{...}

\end{centering}

\clearpage % go to recto page

Start of the text % chapter body

\chapterheadstart \beforechapskip
\afterchapternum \midchapskip
\afterchaptertitle \afterchapskip

83

6. DOCUMENT DIVISIONS

The macro \chapterheadstart is called just before printing a chapter name and
number. By default it inserts \beforechapskip space (default 50pt).

The macro \afterchapternun is called just after printing a chapter number. By de-
fault it inserts \midchapskip space (default 20pt).

The macro \afterchaptertitle is called just after printing a chapter title. By default
it inserts \afterchapskip space (default 40pt).

The lengths \beforechapskip, \midchapskip and \afterchapskip can all be
changed by \setlength or \addtolength. Though as mentioned in Figure 6.1 they need
some explanation:

\beforechapskip
See Figure 6.1. The actual distance between the first baseline of the chapter stuff to
the top of the text block is \beforechapskip + \topskip + \baselineskip. But
because the implementation of \chapter (via \chapterheadstart) make use of
\vspacex, getting rid of \beforechapskip a strange endeavour. If you want to
avoid any space before the first text in the chapter heading, use

\setlength\beforechapskip{-\baselineskip}
or redefine \chapterheadstart to do nothing.
\midchapskip

\afterchapskip
for both, one has to add \baselineskip to get the distance baseline to baseline.

\printchaptername \chapnamefont
\chapternamenum
\printchapternum \chapnumfont

The macro \printchaptername typesets the chapter name (default Chapter or
Appendix) using the font specified by \chapnamefont. The default is the \bfseries
font in the \huge size. Likewise the chapter number is typeset by \printchapternum us-
ing the font specified by \chapnumfont, which has the same default as \chapnamefont.
The macro \chapternamenum, which is defined to be a space, is called between printing
the chapter name and the number.

| \printchaptertitle{(title)} \chaptitlefont \

The title is typeset by \printchaptertitle wusing the font specified by
\chaptitlefont. By default this is a \bfseries font in the \Huge size.

| \printchapternonum |

If a chapter is unnumbered, perhaps because it is in the \frontmatter or because
\chapterx* is used, then when printing the command \printchapternonum is called
instead of printing the name and number, as illustrated below:

\newcommand{\chapterhead}[1]{ % THIS IS A SIMPLIFIED VERSION

\clearforchapter % move to correct page
\thispagestyle{chapter} 7, set the page style
\insertchapterspace % Inserts space into LoF and LoT
\chapterheadstart % \beforechapskip space before heading

\printchaptername\chapternamenum\printchapternum

84

6.5. Chapter headings

\afterchapternum % \midchapskip space between number and title
\printchaptertitle{#1} 7, title
\afterchaptertitle} % \afterchapskip space after title
By default the first paragraph following a \chapter is not indented, this can be controlled
by
\indentafterchapter

\noindentafterchapter

The default is not to indent the first paragraph following a \chapter.

| \insertchapterspace \

By default a \chapter inserts a small amount of vertical space into the List of Figures and
List of Tables. It calls \insertchapterspace to do this. The default definition is:

\newcommand{\insertchapterspace}{/
\addtocontents{lof}{\protect\addvspace{10pt}}/
\addtocontents{lot}{\protect\addvspace{10pt}}/

}

If you would prefer no inserted spaces then
\renewcommand{\insertchapterspace}{}

will do the job. Different spacing can be inserted by changing the value of the length
arguments to \addvspace.

By making suitable changes to the above macros you can make some simple modifica-
tions to the layout.

6.5.1 Defining a chapter style

The class provides many ways in which you can implement your designs for chapter head-
ings.

| \chapterstyle{(style)} |

The macro \chapterstyle is rather like the \pagestyle command in that it sets the style
of any subsequent chapter headings to be (style).

The class provides some predefined chapter styles, including the default style which
is the familiar LaTeX book class chapter headings style. To use the chapterstyle fred just
issue the command

\chapterstyle{fred}

Different styles can be used in the same document.
The simpler predefined styles include:

default The normal LaTeX book class chapter styling; shown in Figure B.1.

section The heading is typeset like a section; that is, there is just the number and the title on
one line. This is illustrated in Figure B.2.

hangnum Like the section style except that the chapter number is put in the margin, as shown
in Figure B.3.

companion This produces chapter headings like those of the LaTeX Companion series of books.
An example is in Figure B.4.

85

6. DOCUMENT DIVISIONS

article The heading is typeset like a \section heading in the article class. This is similar to
the section style but different fonts and spacings are used, as shown in Figure B.5.

reparticle When the article class option is used the default chapter and section styles are close,
but not identical, to the corresponding division heads in the article class. The reparti-
cle chapterstyle makes \chapter replicate the appearance of \section in the article
class.

If you use only the predefined chapterstyles there is no need to plough through the rest
of this section, except to look at the illustrations of the remaining predefined chapterstyles
shown a little later.

The various macros shown in the \chapterhead code above are initially set up as (the
code is known as the default style):

\newcommand{\chapterheadstart}{\vspacex{\beforechapskip}}
\newcommand{\printchaptername}{\chapnamefont \@chapapp}
\newcommand{\chapternamenum}{\space}
\newcommand{\printchapternum}{\chapnumfont \thechapter}
\newcommand{\afterchapternum}{\par\nobreak\vskip \midchapskip}
\newcommand{\printchapternonum}{}
\newcommand{\printchaptertitle}[1]{\chaptitlefont #1}
\newcommand{\afterchaptertitle}{\par\nobreak\vskip \afterchapskip}
\newcommand{\chapnamefont}{\normalfont\huge\bfseries}
\newcommand{\chapnumfont}{\normalfont\huge\bfseries}
\newcommand{\chaptitlefont}{\normalfont\Huge\bfseries}
\setlength{\beforechapskip}{50pt}
\setlength{\midchapskip}{20pt}
\setlength{\afterchapskip}{40pt}

(The mysterious \@chapapp is the internal macro that LaTeX uses to store normally the
chapter name.* It will normally have different values, set automatically, when typesetting
a chapter in the main body (e.g., Chapter) or in the appendices where it would usually be
set to Appendix, but you can specify these names yourself.)

A new style is specified by changing the definitions of this last set of macros and/or
the various font and skip specifications.

| \makechapterstyle{(style)}{{text)} |

Chapter styles are defined via the \makechapterstyle command, where (style) is the
style being defined and (text) is the LaTeX code defining the style. Please note that the
(text) always start by resetting macros and lengths to the values shown above. That is what
you actually get is is the same as

\makechapterstyle{(style)}{
\chapterstyle{default}
(text)

}

To start things off, the default chapter style, which mimics the chapter heads in the
standard book and report classes, as it appears in memoir. cls:

4Remember, if you use a macro that has an @ in its name it must be in a place where @ is treated as a letter.

86

6.5. Chapter headings

\makechapterstyle{default}{}
\chapterstyle{default}

— since the default style is the initial value of \makechapterstyle. The actual code is
seen above.

As an example of setting up a simple chapterstyle, here is the code for defining the
section chapterstyle. In this case it is principally a question of eliminating most of the
printing and zeroing some spacing.

\makechapterstyle{section}{/

\renewcommand*{\printchaptername}{}

\renewcommand*{\chapternamenum}{}

\renewcommand*{\chapnumfont}{\chaptitlefont}

\renewcommand*{\printchapternum}{\chapnumfont \thechapter\space}

\renewcommand*{\afterchapternum}{}

}

In this style, \printchaptername is vacuous, so the normal ‘Chapter’ is never typeset.
The same font is used for the number and the title, and the number is typeset with a space
after it. The macro \afterchapternum is vacuous, so the chapter title will be typeset
immediately after the number.

In the standard classes the title of an unnumbered chapter is typeset at the same
position on the page as the word ‘Chapter’ for numbered chapters. The macro
\printchapternonum is called just before an unnumbered chapter title text is typeset. By
default this does nothing but you can use \renewcommand to change this. For example, if
you wished the title text for both numbered and unnumbered chapters to be at the same
height on the page then you could redefine \printchapternonum to insert the amount
of vertical space taken by any ‘Chapter N” line. For example, as \printchapternonum is
vaucuous in the default chapterstyle the vertical position of a title depends on whether or
not it is numbered.

The hangnum style, which is like section except that it puts the number in the margin,
is defined as follows:

\makechapterstyle{hangnum}{/
\renewcommand*{\chapnumfont}{\chaptitlefont}
% allow for 99 chapters!
\settowidth{\chapindent}{\chapnumfont 999}
\renewcommand*{\printchaptername}{}
\renewcommand*{\chapternamenum}{}
\renewcommand*{\chapnumfont}{\chaptitlefont}
\renewcommand*{\printchapternum}{%

\noindent\1llap{\makebox [\chapindent] [1]{%
\chapnumfont \thechapter}}}
\renewcommand*{\afterchapternum}{}

}

The chapter number is put at the left of a box wide enough for three digits. The box is put
into the margin, via \11lap, for typesetting. The chapter title is then typeset, starting at the
left margin.

| \chapindent \

87

6. DOCUMENT DIVISIONS

The length \chapindent is provided for use in specifying chapterstyles, but you could
use it for any other purposes.
The definition of the companion chapterstyle is more complicated.

\makechapterstyle{companion}{%
\renewcommand*{\chapnamefont}{\normalfont\LARGE\scshape}
\renewcommand*{\chapnumfont}{\normalfont\Huge}
\renewcommand*{\printchaptername}{/,

\raggedleft\chapnamefont \@chapapp}
\setlength{\chapindent}{\marginparsep}
\addtolength{\chapindent}{\marginparwidth}
\renewcommand{\printchaptertitle} [1]1{%

\begin{adjustwidth}{}{-\chapindent}

\raggedleft \chaptitlefont #i#1\par\nobreak

\end{adjustwidth}}

}

As shown in Figure B.4 the chapter name is in small caps and set flushright. The title is
also set flushright aligned with the outermost part of the marginal notes. This is achieved
by use of the ad justwidth environment to make LaTeX think that the typeblock is locally
wider than it actually is.

6.5.2 Further chapterstyles

The class provides more chapterstyles, which are listed here. Some are mine and others
are from postings to CTT by memoir users. I have modified some of the posted ones to
cater for things like appendices, multiline titles, and unnumbered chapters which were
not considered in the originals. The code for some of them is given later to help you see
how they are done. Separately, Lars Madsen has collected a wide variety of styles [?] and
shows how they were created.

If you want to try several chapterstyles in one document, request the default style
before each of the others to ensure that a previous style’s changes are not passed on to a
following one.

bianchi This style was created by Stefano Bianchi® and is a two line centered arrangement
with rules above and below the large bold sanserif title line. The chapter number
line is in a smaller italic font. An example is in Figure B.6.

bringhurst The bringhurst chapterstyle described in the manual and illustrated in Figure B.7.

brotherton A very simple style designed by William Adams’ for the science fiction novel Star
Dragon by Mike Brotherton. The novel is freely downloadable from Brotherton’s web
site. The style is the same as the default except that the number is spelt out in words.
It is demonstrated in Figure B.8. In the novel the chapters are actually untitled i.e.,
via \chapter{}.

chappell The name and number are centered above a rule and the title in italics is below, again
centered. It is illustrated in Figure B.9.

5See §8.5.
6CTT, New chapter style: chapter vs chapter*, 2003/12/09
7CTT, An example of a novel?,2006/12/09

88

6.5. Chapter headings

crosshead

culver

dash

demo?2

demo3

dowding

ell

ger

komalike

Iyhne

madsen

The number and title are centered and set with a large bold font. It is illustrated in
Figure B.10.

A chapter style I created for Christopher Culver® based on the format of ‘ancient’
texts. It is one line, centered, bold and with the number printed as Roman numerals,
as shown in Figure B.11.

He also wanted sections to just start with the number and the text to immediately
follow on the same line. That can be accomplished like this:

\renewcommand*{\thesection}{\arabic{section}}
\renewcommand*{\section}[1]{%
\refstepcounter{section}y,
\par\noindent
\textbf{\thesection.}%
\space\nolinebreak}

A simple two line centered chapterstyle. There is a short dash on either side of the
number and a slightly larger version of the regular font is used for both the number
and the title. This style is shown in Figure B.12.

A two line chapterstyle with a large sanserif title; the number is above, centered and
written (e.g., Six instead of 6) in a bold font. There are rules above and below the
title. An example is shown in Figure B.13.

The chapterstyle used in this document. It is a modified version of the demo2 chap-
terstyle, using an italic rather than bold font for the number.

A centered style where the name and number are set in a bold font, with the number
spelled out. The title is below in a large italic font. The style is based on the design
used in Dowding’s Finer Points [?]. It is illustrated in Figure B.14.

A raggedleft sanserif chapterstyle. The number line is separated from the title by
rules like an ‘L’ on its side and the number is placed in the margin, as shown in
Figure B.15. I will probably use this in my next book.

This style was created by Gerardo Garcia’ and is a two line, raggedright, large bold
style with rules above and below. It is demonstrated in Figure B.16.

A section-like style set with a sans serif type. It is like that in the scrbook class (part
of the KOMA bundle). It is illustrated in Figure B.17.

A style created by Anders Lyhne!® and shown in Figure B.18 where the raggedleft
sanserif title is between two rules, with the name and number above. I modified the
original to cater for unnumbered chapters.

Caveat: The Iyhne style requires the graphicx package.

This was created by Lars Madsen'! and is shown in Figure B.19. It is a large sanserif
raggedleft style with the number in the margin and a rule between the number and
title lines.

Caveat: The madsen style requires the graphicx package.

8CTT, "Biblical” formatting, how?,2004/03/29

9CTT, Fancy Headings, Chapter Headings, 2002/04/12
O¢cTT, Glossary, 2006/02/09
eTT, New chapter style: chapter vs chapter*, 2003/12/09

89

6. DOCUMENT DIVISIONS

ntglike

pedersen

southall

tandh

thatcher

veelo

verville

wilsondob

A smaller version of the standard chapterstyle; it is like that in the NTG classes (boek
class) developed by the Dutch TeX User Group. It is illustrated in Figure B.20.

This was created by Troels Pedersen'? and requires the graphicx package, and, to
get the full effect, the color package as well. The title is raggedright in large italics
while the number is much larger and placed in the righthand margin (I changed the
means of placing the number). The head of this chapter is set with the pedersen style,
because it cannot be adequately demonstrated in an illustration.

Caveat: The pedersen style requires the graphicx package.

This style was created by Thomas Dye. It is a simple numbered heading with the
title set as a block paragraph, and with a horizontal rule underneath. It is illustrated
in Figure B.21.

A simple section-like style in a bold font. It is based on the design used in the Thames
& Hudson Manual of Typography [?] and is illustrated in Figure B.22.

A style created by Scott Thatcher!'® which has the chapter name and number centered
with the title below, also centered, and all set in small caps. There is a short rule
between the number line and the title, as shown in Figure B.23. I have modified the
original to cater for multiline titles, unnumbered chapters, and appendices.

This style created by Bastiaan Veelo is shown in Figure B.24 and is raggedleft, large,
bold and with a black square in the margin by the number line.

Caveat: The veelo style requires the graphicx package.

A chapterstyle I created for Guy Verville'*. It is a single line, large centered style
with rules above and below, as in Figure B.25. Unlike my posted version, this one
properly caters for unnumbered chapters.

A one line flushright (raggedleft) section-like style in a large italic font. It is based
on the design used in Adrian Wilson’s The Design of Books [?] and is illustrated in
Figure B.26.

The code for some of these styles is given in §B.1 within the Showcase Appendix. For
details of how the other chapter styles are defined, look at the documented class code. This
should give you ideas if you want to define your own style.

Note that it is not necessary to define a new chapterstyle if you want to change the
chapter headings — you can just change the individual macros without putting them into
a style.

6.5.3

Chapter precis

Some old style novels, and even some modern text books,'® include a short synopsis of the
contents of the chapter either immediately after the chapter heading or in the ToC, or in
both places.

| \chapterprecis{(text)} ‘

12¢TT, Chapter style, 2006/01/31

13¢TT, memoir: chapter headings capitalize math symbols, 2006/01/18
41T, Headers and special formatting of sections, 2005/01/18

15For example, Robert Sedgewick, Algorithms, Addison-Wesley, 1983.

90

6.5. Chapter headings

The command \chapterprecis prints its argument both at the point in the document
where it is called, and also adds it to the . toc file. For example:

\chapter{}), first chapter
\chapterprecis{Our hero is introduced; family tree; early days.}

Now for the details.

| \prechapterprecisshift \

The length \prechapterprecisshift controls the vertical spacing before a
\chapterprecis. If the precis immediately follows a \chapter then a different space is
required depending on whether or not the article class option is used. The class sets:

\ifartopt
\setlength{\prechapterprecisshift}{Opt}
\else
\setlength{\prechapterprecisshift}{-2\baselineskip}
\fi

\chapterprecishere{(text)}
\chapterprecistoc{(text)}

The \chapterprecis command calls these two commands to print the (text) in
the document (the \chapterprecishere command) and to put it into the ToC (the
\chapterprecistoc command). These can be used individually if required.

\precisfont
\prechapterprecis \postchapterprecis

The \chapterprecishere macro is intended for use immediately after a \chapter. The
(text) argument is typeset in the \precisfont font in a quote environment. The macro’s
definition is:
\newcommand{\chapterprecisherel} [1]1{%
\prechapterprecis #1\postchapterprecis}

where \prechapterprecis, \postchapterprecis and \precisfont are defined as:

\newcommand{\prechapterprecis}{},
\vspace*{\prechapterprecisshift}’
\begin{quote}\precisfont}

\newcommand{\postchapterprecis}{\end{quotel}}

\newcommand*{\precisfont}{\normalfont\itshape}

Any or all of these can be changed if another style of typesetting is required.
Next the following macros control the formatting of the precis text in the ToC.

| \precistoctext{(text)} \precistocfont \precistocformat \

The \chapterprecistoc macro puts \precistoctext{(text)} into the toc file. The
default definition similar to (but not exactly'®)

1Internally we use a different name for \leftskip and \rightskip to make it easier to do right to left
documents with the class and the bidi package.

91

6. DOCUMENT DIVISIONS

...end of last line of preceding text.

||beforeskip|| + \baselineskip (of heading font)

mat 3.5 Heading Title

afterskip + \baselineskip (of text font)

wThis is the start of the after-heading text, which continues on ...
second line of text following the heading ...

Figure 6.2: Displayed sectional headings

\DeclareRobustCommand{\precistoctext} [1]1{%
{\nopagebreak\leftskip \cftchapterindent\relax
\advance\leftskip \cftchapternumwidth\relax
\rightskip \@tocrmarg\relax
\precistocformat\precistocfont #1\parl}}

Effectively, in the ToC \precistoctext typesets its argument like a chapter title using the
\precistocfont (default \itshape), and \precistocformat (default \noindent).

6.6 LOWER LEVEL HEADINGS

The lower level heads — sections down to subparagraphs — are also configurable, but
there is nothing corresponding to chapter styles.

There are essentially three things that may be adjusted for these heads: (a) the vertical
distance between the baseline of the text above the heading to the baseline of the title text,
(b) the indentation of the heading from the left hand margin, and (c) the style (font) used
for the heading title. Additionally, a heading may be run-in to the text or as a display
before the following text; in the latter case the vertical distance between the heading and
the following text may also be adjusted. Figure 6.2 shows the parameters controlling a
displayed sectional heading and Figure 6.3 shows the parameters for a run-in heading.
The default values of the parameters for the different heads are in Table 6.2 for the display
heads and Table 6.3 for the run-in heads.

In the following I will use S to stand for one of sec, subsec, subsubsec, para or
subpara, which are in turn shorthand for section through to subparagraph, as sum-
marised in Table 6.4.

| \setbeforeSskip{(skip)} |

The absolute value of the (skip) length argument is the space to leave above the heading.
If the actual value is negative then the first line after the heading will not be indented. The

92

6.6. Lower level headings

...end of last line of preceding text.

||beforeskip|| + \baselineskip (of heading font)

‘ . . afterskip (< 0)
indent 3 .5 Headlng T]_tle e ,Start of text ...

second line of text following the heading ...

Figure 6.3: Run-in sectional headings

Table 6.2: Default display sectioning layout parameter values

section subsection subsubsection
beforeskip (-ex) 3.5+1-.2 3.25+1-.2 3.25+1-.2
indent 0 0 0
afterskip (ex) 2.3+.2 1.5+.2 1.5+.2
font \Large\bfseries \large\bfseries \bfseries

Table 6.3: Default run-in sectioning layout parameter values

paragraph subparagraph

beforeskip (+ex) 3.25+1-2 3.25+1-.2
indent 0 \parindent
afterskip -lem -lem
font \bfseries \bfseries

Table 6.4: Values for S in section styling macro names.

S sec subsec subsubsec para subpara
section subsection subsubsection paragraph subparagraph

93

6. DOCUMENT DIVISIONS

default (skip) depends on the particular level of heading, but for a \section (i.e., when
S = sec)itis

-3.5ex plus -lex minus -.2ex

where the plus and minus values are the allowable stretch and shrink; note that all the
values are negative so that there is no indentation of the following text. If you wanted
indentation then you could do

\setbeforesecskip{3.5ex plus lex minus .2ex}

] \setSindent{(length)} ‘

The value of the (length) length argument is the indentation of the heading (number and
title) from the lefthand margin. This is normally Opt.

| \setSheadstyle{{font)} ‘

This macro specifies the style (font) for the sectional number and title. As before, the de-
fault value of the (font) argument depends on the level of the heading. For a \subsection
(i.e., S=subsec) itis \large\bfseries\raggedright, to typeset in the \bfseries font
in the \1arge size; the title will also be set ragged right (i.e., there will be no hyphenation
in a multiline title).

Note that the very last element in the (font) argument may be a macro that takes
one argument (the number and title of the heading). So, if for some reason you wanted
\subsubsection titles to be all uppercase, centered, and in the normal font, you can do

\setsubsubsecheadstyle{\normalfont\centering\MakeUppercase}

% % %
Under very special circumstances, one might want to get completely rid of the sectional
header (for example, if you are using a very small paper size, and you are placing the
section information in the header instead), by creating a macro that takes on argument
and ignores it

\newcommand\ignoreMe [1]{}
\setsecheadstyle{\ignoreMe}

* ok ok
As another example, although I don’t recommend this, you can draw a horizontal line
under section titles via:

\newcommand{\ruledsec}[1]{/%
\Large\bfseries\raggedright #1 \rule{\textwidth}{0.4pt}}
\setsecheadstyle{\ruledsec}

| \setafterSskip{(skip)} ‘

If the value of the (skip) length argument is positive it is the space to leave between the
display heading and the following text. If it is negative, then the heading will be run-
in and the value is the horizontal space between the end of the heading and the following
text. The default (skip) depends on the particular level of heading, but for a \section (ie.,
when S = sec) itis 2.3ex plus .2ex, and for a \subparagraph (i.e., S = subpara),
which is a run-in heading, it is ~1em.

*

94

6.6. Lower level headings

\@hangfrom{(code)}
\sethangfrom{(code)}

Internally all the titling macros use a macro called \@hangfrom which by default makes
multiline titles look like a hanging paragraph. The default definition of \@hangfrom (in
file 1tsect.dtx) is effectively:

\newcommand{\@hangfrom} [1] {\setbox\@tempboxa\hbox{{#1}}/,
\hangindent \wd\@tempboxa\noindent\box\@tempboxa}

The argument is put into a box and its width is measured, then a hanging paragraph is
started with the argument as the first thing and second and later lines indented by the
argument’s width.

The \sethangfrom macro redefines \@hangfrom to be (code). For example, to have
the titles set as block paragraphs instead of hanging paragraphs, simply do:

\sethangfrom{\noindent #1}

Note that you have to use #1 at the position in the replacement code for \@hangfrom
where the argument to \@hangfrom is to be located.

\@seccntformat{(code)}
\setsecnumformat{(code)}

Internally all the titling macros like \section, \subsection etc. use a kernel macro
called \@seccntformat which defines the formatting of sectional numbers in a title. Its
default definition (in file 1tsect . dtx) is effectively:”

\newcommand{\@seccntformat}[1]{\csname the#1l\endcsname\quad}

which formats the sectional numbers as \thesec. .. with a space afterwards. The com-
mand \setsecnumformat redefines \@seccntformat to be (code). For example, to put a
colon and space after the number

\setsecnumformat{\csname the#1\endcsname:\quad}

Note that you have to use #1 where you want the argument (sectional number) of
\@seccntformat to go.
Note that \setsecnumformat applies to all \section, \subsection, etc. If you want
to change it only for, say, \subsection, use the \setsubsechook described below.
*

\hangsecnum
\defaultsecnum

The macro \hangsecnum is a declaration that makes sectional numbers hang in the mar-
gin. The macro \defaultsecnumis a declaration that reverses the effect of \hangsecnum,
that is, sectional numbers will be typeset in their familiar places.

\Shook
\setShook{(text)}

7Because they all internally use the \@startsection macro.

95

Hang the
whole heading
in the margin

6. DOCUMENT DIVISIONS

The macro \Shook is called immediately before the typesetting of the title; its default def-
inition does nothing. The macro \setShook redefines \Shook to be (text). You can use
this hook, for example, to insert a \sethangfrom or \setsecnumformat command into
the definition of a particular section division command. In that case, remember that if you
want to refer to the #1 argument, in the argument for \setsecnumformat, then you have
to double the #, i.e. use ##1, see the example below.

Here are some example lower level heads and the code used to produce them.

Source for Example 6.1

\setsubsubsecheadstyle{\bfseries\raggedright}
\subsubsection*{Bold raggedright}
\setsubsubsecheadstyle{\scshape\raggedright}
\subsubsection*{Small caps raggedright}
\setsubsubsecheadstyle{\itshape\raggedright}
\subsubsection*{Italic raggedright}
\setsubsubsecheadstyle{\Large\centering}
\subsubsection*{Large centered}
\setsubsubsecheadstyle{\large\centering\MakeUppercase}
\subsubsection*{large centered uppercase}
\setsubsubsecheadstyle{\bfseries\centering}
\subsubsection*{Bold centered}
\setsubsubsecheadstyle{\scshape\centering}
\subsubsection*{Small caps centered}
\setsubsubsecindent{2\parindent}
\setsubsubsecheadstyle{\scshape\raggedright}
\subsubsection*{Small caps indented}
\setsubsubsecindent{Opt}
\setsubsubsecheadstyle{\itshape\raggedleft}
\subsubsection*{Italic flushright}
\newcommand*{\shortcenter} [1]{%
\sethangfrom{\noindent ##1}/,
\normalfont\boldmath\bfseries
\centering
\parbox{3in}{\centering #1}\par}
\setsubsubsecheadstyle{\shortcenter}
\subsubsection*{Bold centered but taking up no more than 3 inches
if a long title}

A less traditional style is to put the whole heading into the margin. I have done this here
for a \paragraph heading (which is not otherwise used in this manual). The code is:

\newcommand{\marginbox} [1]{/
\parbox[t] [Opt]{6em}{\itshape\raggedleft\leavevmode #1}}
\newcommand{\marginhead} [1]{%
{\1lap{\marginbox{#1}\kernO.5em}}}
\setparaindent{Oem}

96

6.6. Lower level headings

Typeset Example 6.1: A variety of subhead styles

Bold raggedright

SMALL CAPS RAGGEDRIGHT

Italic raggedright

Large centered
LARGE CENTERED UPPERCASE
Bold centered
SMALL CAPS CENTERED
SMALL CAPS INDENTED

Italic flushright

Bold centered but taking up no more than 3
inches if a long title

\setafterparaskip{Oem}

\setparaheadstyle{\marginhead}
\setparahook{\setsecnumformat{\csname the##1\endcsname\ }}
\paragraph{Hang the whole heading in the margin}j,

The macro \marginbox puts its argument, raggedleft, into a zero height \parbox of width
6em, aligned at the top. The \marginhead macro puts its argument into a \marginbox
and puts the \marginbox 0.5em to the left. The \paragraph head style is then set
to use \marginhead to typeset the heading. The format for the number is reset via
\setparahook and \setsecnumformat.

A different approach is to create new macros, each named by the type of sectional macro
it formats, and then make the number format call these macros. In this example we will
provide separate formatting for \section and \subsection.

\setsecnumformat{\csname #1lsecnumformat\endcsname}
\newcommand\sectionsecnumformat{\thesection:\quad}
\newcommand\subsectionsecnumformat{\fbox{\enspace\thesubsection\enspace}\enspace}

Since the macro is only called in the proper context, we can use \thesection directly in
the code for \section. However, this requires you to define formatting macros for all
sectional headings. Here is how to reverse it, that is see if a format exists, use it, otherwise
use a default:

\makeatletter
\setsecnumformat{
\@ifundefined{#1secnumformat}{’% nope, use a default
\csname the#1\endcsname\quad,

97

6. DOCUMENT DIVISIONS

H%
\csname #1secnumformat\endcsname?’,
o
}

\makeatother

6.7 FANCY ANONYMOUS BREAKS

Often, in novels, there is a need to break up the text to indicate that there is a major break in
the story, but not enough to warrant starting a new chapter. I have called these anonymous
divisions as there is neither number nor title associated with them.

\plainbreak{(num)} \plainbreak*{ (num)}
\fancybreak{(text)} \fancybreak*{(text)}

The \plainbreak is an anonymous division. It puts (num) blank lines into the type-
script and the first line of the following paragraph is not indented. Another anonymous
division is \fancybreak which puts (text) centered into the typescript and the initial line
of the following paragraph is not indented. For example:

\fancybreak{{*}\\{* * *}\\{*}}

typesets a little diamond made of asterisks.
The starred versions of the commands indent the first line of the following paragraph.

\plainfancybreak{(space) H{ (num)}{(text)}
\plainfancybreak*{(space)}{(num)}{(text)}

If a plain break comes at the top or bottom of a page then it is very difficult for a reader to
discern that there is a break at all. If there is text on the page and enough space left to put
some text after a break the \plainfancybreak command will use a \plainbreak with
(num) lines, otherwise (the break would come at the top or bottom of the page) it will use a
\fancybreak with (text). The (space) argument is a length specifying the space needed for
the (num) blank lines and some number of text lines for after the plain break. The starred
version of the command uses the starred versions of the \plainbreak and \fancybreak
commands.

Unfortunately there is an interaction between the requested, plain, and fancy break
spaces. Let P be the space (in lines) required for the plain break, F' the space (in lines)
required for the fancy break, and S the (space) argument (in lines). From some experiments
it appears that the condition for the plain break to avoid the top and bottom of the page is
that S — P > 1. Also, the condition for the fancy break to avoid being put in the middle
of a page (i.e., not at the top or bottom) is that S — F' < 3. For example, if the plain and
fancy breaks take the same vertical space then S = P + 2 is the only value that matches the
conditions. In general, if F' = P + n then the conditionis 1 < § — P < 3 + n, which means
that for the \plainfancybreak command the fancy break must always take at least as
much space as the plain break.

* * *

The \plainfancybreak macro inserts a plain break in the middle of a page or if the break
would come at the bottom or top of a page it inserts a fancy break instead.

98

6.7. Fancy anonymous breaks

\pfbreak \pfbreakx*
\pfbreakskip
\pfbreakdisplay{(text)}

The \pfbreak macro is an alternate for \plainfancybreak that may be more con-
venient to use. The gap for the plain break is given by the length \pfbreakskip which
is initialised to produce two blank lines. The fancy break, which takes the same vertical
space, is given by the (fext) argument of \pfbreakdisplay. The default definition:

\newcommand*{\pfbreakdisplay}{*\quad*\quad*}

typesets three asterisks, as shown a few lines before this.

O &
You can change the definition of \pfbreakdisplay for a different style if you wish. The
fancy break just before this was produced via:

\renewcommand{\pfbreakdisplay}{/
\ensuremath{\clubsuit\quad\diamondsuit\quad\clubsuit}}
\fancybreak{\pfbreakdisplay}

Iused \fancybreak as I'm not sure where the break will come on the page and the simple
\pfbreak macro might just have produced a couple of blank lines instead of the fancy
display.
The paragraph following \pfbreak is not indented. If you want it indented use the
\pfbreakx* starred version.
e 8 a

The fancy break using fleurons just before this paragraph was produced by:

\renewcommand{\pfbreakdisplay}{/
\ding{167}\quad\ding{167}\quad\ding{167}}
\fancybreak{\pfbreakdisplay}

where the \ding command is from the pifont package.

OOOOHOUHIOUHIONNHO
The fancy break made with fleurons was simple to specify. There are many other symbols
that you can use in LaTeX and these can be combined in potentially attractive ways to
produce a fancy break like the one just above.

The following idea was originally suggested by Christina Thiele [?], and can be used to
string together mathematical symbols. It works following the same principles as the dot
leaders in the Table of Contents.

Define a macro called with the syntax \motif{(shape)}, where (shape) is a symbol or
other shape to be repeated in a chain,

\newcommand{\motif}[1]{\cleaders\hbox{#1}\hfil}

The definition of \motif is basically taken from TeX, and is part of the code for mak-
ing things like dot leaders. \hbox{(stuff)} puts (stuff) into a horizontal box, and
\cleaders(box) fills a specified amount of space using whatever number of copies of
the (box) as is needed; if there is too much space to be filled by a whole number of boxes,
the spare space is spread around equally. \hfil is stretchy space. The \motif macro
essentially says, fill up a space with with copies of (shape).

We also need another macro, \chain{(shape)}{(length)}, where {(shape)} is a shape to
be repeated as many times as it takes to fill up a distance (length).

99

6. DOCUMENT DIVISIONS

\newcommand{\chain}[2]{\leavevmode\hbox to #2{\motif{#1}}}

The \leavevmode makes sure that we are typesetting horizontally, and \hbox to
<length>{stuff} puts (stuff) into a horizontal box with the fixed length of (length).
Roughly, what \chain and \motif do together is typeset enough copies of (shape) to
make up a distance (length).

That is what we have been aiming for. All that remains is to decide on what shape we
might want to use. Here is one consisting of diamonds.

\makeatletter
\newcommand{\diamonds}{\m@th$\mkern-.6mu \diamond \mkern-.6mu$}
\makeatother

The \diamond symbol can only be used in math mode, hence it is surrounded by the
shorthand $. . . $. TeX usually leaves a little space around maths but the \m@th command
stops that. \mkern adjusts space in math mode, and in this case we are eliminating the
spaces'® that would normally be on either side of the diamond symbol. The whole effect
gives us a diamond symbol with zero space around it.

The fancy break at the start of this discussion was typeset by

% define \motif, \chain, \diamonds and then
\fancybreak{\chain{\diamonds}{0.25\textwidth}}

The code is not part of the memoir class; I defined it just as indicated in the body of the
book. It would more naturally go into the preamble or a package. You might like to try
specifying your own pattern, say \clubs, using the \club math symbol but leaving some
space between them.

6.8 FOOTNOTES IN DIVISION HEADINGS

With the sectioning commands the text of the required argument (title) is used as the text
for the section title in the body of the document.

When the optional argument (foc-title) is used in a sectioning command it is moving
and any fragile commands must be \protected, while the (title) argument is fixed. The
(toc-title) also serves double duty:

1. Itis used as the text of the title in the ToC;

2. Itis used as the text in page headers.

If the optional argument is not present, then the (title) is moving and serves the triple
duty of providing the text for the body and ToC titles and for page headers.

Some folk feel an urge to add a footnote to a sectioning title, which should be resisted. If
their flesh is weak, then the optional argument must be used and the \footnote attached
to the required argument only. If the optional argument is not used then the footnote mark
and text is likely to be scattered all over the place, on the section page, in the ToC, on any
page that includes (title) in its headers. This is unacceptable to any reader. So, a footnoted
title should look like this:

\chapter[Title]{Title\footnote{Do you really have to do this?}}

181t is usually a matter for experiment to find the right values for the kerning.

100

6.9. Predefined heading styles

Table 6.5: Default fonts for sectional headings

\booknamefont \huge\bfseries huge
\booknumfont \huge\bfseries huge
\booktitlefont \Huge\bfseries Huge
\partnamefont \huge\bfseries huge
\partnumfont \huge\bfseries huge
\parttitlefont \Huge\bfseries Huge
\chapnamefont \huge\bfseries huge
\chapnumfont \huge\bfseries huge
\chaptitlefont \Huge\bfseries Huge
\secheadstyle \Large\bfseries Large
\subsecheadstyle \large\bfseries Large

\subsubsecheadstyle \normalsize\bfseries mnormal
\paraheadstyle \normalsize\bfseries normal
\subparaheadstyle \normalsize\bfseries normal

6.9 PREDEFINED HEADING STYLES

All LaTeX classes for typesetting books and reports provide a particular style for sectional
headings. The memoir class is unusual in that it provides several sets of heading styles.
Each set has different spacing around the division heads, and different fonts in different
sizes. As a reference, Table 6.5 lists the default fonts used for the sectional headings. These
fonts are all bold but in different sizes depending on the division level.

\makeheadstylesq{(name)}{(code)}
\headstyles{(name)}

The default sectional division head styles provided by memoir form the default headstyles
and give the same appearance as the standard book and report classes. The set is created
via the \makeheadstyles macro and called for via the headstyles declaration.

\makeheadstyles{default}{%
\renewcommand*{\booknamefont}{\normalfont\huge\bfseries}
%% and so on down to subparagraph specification
\renewcommand*{\subparaheadstyle}{\normalfont\normalsize\bfseries}

}

\headstyles{default}

A somewhat different set of headstyles is used for this manual. When using
\makeheadstyles you only need to specify things that differ from the default. Within
the class the memman set of headstyles is defined as:

\newcommand*{\addperiod} [1]{#1.}
\makeheadstyles{memman}{%

101

6. DOCUMENT DIVISIONS

% book changes
\renewcommand*{\booknamefont}{\normalfont\huge\sffamily}
\renewcommand*{\booknumfont}{\normalfont\huge\sffamily}
\renewcommand*{\booktitlefont}{\normalfont\Huge\sffamily}
\renewcommand*{\midbookskip}{\par\vskip 2\onelineskip}/,

% part changes
\renewcommand*{\partnamefont}{\normalfont\huge\sffamily}
\renewcommand*{\partnumfont}{\normalfont\huge\sffamily}
\renewcommand*{\parttitlefont}{\normalfont\Huge\sffamily}
\renewcommand*{\midpartskip}{\par\vskip 2\onelineskip}/,

% chapter
\chapterstyle{demo3}

% section
\setbeforesecskip{-1.333\onelineskip

\@plus -0.5\onelineskip \@minus -.5\onelineskip}y,
\setaftersecskip{0.667\onelineskip \@plus 0.1\onelineskipl}’
\setsecheadstyle{\normalfont\scshape\raggedrightl}y,

% subsection

\setbeforesubsecskip{-0.667\onelineskip

\@plus -0.25\onelineskip \@minus -0.25\onelineskipl}’
\setaftersubsecskip{0.333\onelineskip \@plus 0.1\onelineskipl}’
\setsubsecheadstyle{\normalfont\bfseries\raggedright}y

% subsubsection

\setbeforesubsubsecskip{-0.667\onelineskip

\@plus -0.25\onelineskip \@minus -0.25\onelineskipl}’
\setaftersubsubsecskip{0.333\onelineskip \@plus 0.1\onelineskip}’
\setsubsubsecheadstyle{\normalfont\normalsize\itshape\raggedrightl}y

% paragraph

\setbeforeparaskip{1l.0\onelineskip

\@plus 0.5\onelineskip \@minus 0.2\onelineskipl}’
\setafterparaskip{-lem}%
\setparaheadstyle{\normalfont\normalsize\itshape\addperiod}%

% subparagraph
\setsubparaindent{\parindent}/,
\setbeforesubparaskip{1.0\onelineskip

\@plus 0.5\onelineskip \@minus 0.2\onelineskipl}’
\setaftersubparaskip{-1em}Y
\setsubparaheadstyle{\normalfont\normalsize\itshape\addperiod}}

You can see the effect throughout this document. This chapter is slightly different in that
I have used the pedersen chapterstyle instead of the demo3 chapterstyle that I have nor-
mally used.

Several other sets of headstyles are provided as well and the full list is below. The
different fonts used are given in Table 6.6 and generally speaking they start off being large
for chapter heads but are normal size by the time subsubsection heads are reached, or
before.

bringhurst A set based on Bringhurst’s Elements of Typographic Style [?]. It uses the bringhurst

102

6.9. Predefined heading styles

Table 6.6: Fonts used by different headstyles

Headstyles chapter section subsec subsubsec para subpara
bringhurst CAPS s.cAPs ltalic S. CAPS Italic Italic
crosshead Bold CAPS Bold S. CAPS Italic S. CAPS
default Bold Bold Bold Bold Bold Bold
dowding Italic CAPS s.cAps ltalic Italic Italic
komalike Sans Sans Sans Sans Sans Sans
memman Sans S. CAPS Bold Italic Italic Italic
ntglike Bold Bold Bold Slanted Slanted Slanted
tandh Bold CAPS Italic Bold Italic Italic
wilsondob Italic CAPS Italic S. CAPS Italic Italic

crosshead

default
dowding

komalike

memiman

ntglike
tandh

wilsondob

chapterstyle (Figure B.7).

This set uses the crosshead chapterstyle and the lower level division titles are set as
crossheads.

The default set corresponding the LaTeX book class.

A set based on Dowding’s Finer Points [?]. It uses the dowding chapterstyle (Fig-
ure B.14).

A set based on the kind of headings used in the KOMA scrbook class, where there
are all in a bold sans serif font. It uses the komalike chapterstyle (Figure B.17).

The set used in this document, including the demo3 chapterstyle.

A set based on the kind of headings used in the NTG (Dutch TUG) boek class. It uses
the ntglike chapterstyle (Figure B.20) and the headings are quiter than the default.

A set based the heads used in Thames & Hudson Manual of Typography [?]. It uses
the tandh chapterstyle (Figure B.22)

A set based on those used in Adrian Wilson’s Design of Books [?]. It uses the wilson-
dob chapterstyle (Figure B.26).

103

Seven

Pagination and headers

The focus of this chapter is on marking the pages with signposts so that the reader can
more readily navigate through the document.

7.1 PAGINATION AND FOLIOS

Every page in a LaTeX document is included in the pagination. That is, there is a number
associated with every page and this is the value of the page counter. This value can be
changed at any time via either \setcounter or \addtocounter.

\pagenumbering{(rep)}
\pagenumbering*{(rep)}

The macros \pagenumbering and \pagenumbering* cause the folios to be printed using
the counter representation (rep) for the page number, where (rep) can be one of: Alph,
alph, arabic, Roman or roman for uppercase and lowercase letters, arabic numerals, and
uppercase and lowercase Roman numerals, respectively. As there are only 26 letters, A1ph
or alph can only be used for a limited number of pages. Effectively, the macros redefine
\thepage to be \rep{page}.

Additionally, the \pagenumbering command resets the page counter to one; the
starred version does not change the counter. It is usual to reset the page number back
to one each time the style is changed, but sometimes it may be desirable to have a contin-
uous sequence of numbers irrespective of their displayed form, which is where the starred
version comes in handy.

Hint. If you are using hyperref and include a title page, the following setup might be useful

\pagenumbering{Alpha}
\begin{titlingpage}

\end{titlingpage}

\frontmatter

... % this has roman numbering
\mainmatter

... % this has arabic numbering

The code has the advantage that hyperref does not warn that the page anchors for pages 1 and 2 are
already defined (the titlingpage env does not show the A, B page numbers).

\savepagenumber
\restorepagenumber

105

7. PAGINATION AND HEADERS

The macro \savepagenumber saves the current page number, and the macro
\restorepagenumber sets the page number to the saved value. This pair of commands
may be used to apparently interrupt the pagination. For example, perhaps some full page
illustrations will be electronically tipped in to the document and pagination is not required
for these. This could be done along the lines of:

\clearpage % get onto next page
\savepagenumber % save the page number
\pagestyle{empty} 7% no headers or footers
%% insert the illustrations

\clearpage

\pagestyle{...}

\restorepagenumber

If you try this sort of thing, you may have to adjust the restored page number by one.

\restorepagenumber
% perhaps \addtocounter{page}{1} or \addtocounter{pagel}{-1}

Depending on the timing of the \ . . . pagenumber commands and TeX's decisions on page
breaking, this may or may not be necessary.

7.2 PAGE STYLES

The class provides a selection of pagestyles that you can use and if they don't suit, then
there are means to define your own.

These facilities were inspired by the fancyhdr package [?], although the command set
is different.

The standard classes provide for a footer and header for odd and even pages. Thus
there are four elements to be specified for a pagestyle. This class partitions the headers
and footers into left, center and right portions, so that overall there is a total of 12 elements
that have to be specified for a pagestyle. You may find, though, that one of the built in
pagestyles meets your needs so you don’t have to worry about all these specifications.

\pagestyle{(style)}
\thispagestyle{(style)}

\pagestyle sets the current pagestyle to (style), where (style) is a word containing only
letters. On a particular page \thispagestyle can be used to override the current
pagestyle for the one page.

Some of the class” commands automatically call \thispagestyle. For example:

e the titlingpage environment calls
\thispagestyle{titlingpagestyle}

e if \cleardoublepage will result in an empty verso page it calls
\thispagestyle{cleared}

for the empty page.

For reference, the full list is given in Table 7.1.
The page styles provided by the class are:

106

7.2. Page styles

empty The headers and footers are empty.

plain The header is empty and the folio (page number) is centered at the bottom of the
page.

headings The footer is empty. The header contains the folio at the outer side of the page;
on verso pages the chapter name, number and title, in slanted uppercase is set at the
spine margin and on recto pages the section number and uppercase title is set by the
spine margin.

myheadings Like the headings style the footer is empty. You have to specify what is to go
in the headers.

simple The footer is empty and the header contains the folio (page number) at the outer
side of the page. It is like the headings style but without any title texts.

ruled The footer contains the folio at the outside. The header on verso pages contains the
chapter number and title in small caps at the outside; on recto pges the section title is
typeset at the outside using the normal font. A line is drawn underneath the header.

Ruled This is like the ruled style except that the headers and footers extend into the fore-
edge margin.

companion Thisis a copy of the pagestyle in the Companion series (e.g., see [?]). It is similar
to the Ruled style in that the header has a rule which extends to the outer edge of the
marginal notes. The folios are set in bold at the outer ends of the header. The chapter
title is set in a bold font flushright in the verso headers, and the section number and
title, again in bold, flushleft in the recto headers. There are no footers.

book This is the same as the plain pagestyle.
chapter This is the same as the plain pagestyle.
cleared This is the same as the empty pagestyle.
part This is the same as the plain pagestyle.

title This is the same as the plain pagestyle.
titlingpage This is the same as the empty pagestyle.

] \uppercaseheads \nouppercaseheads \

Following the declaration \nouppercaseheads the titles in the headings pagestyle will
not be automatically uppercased. The default is \uppercaseheads which specifies that
the titles are to be automatically uppercased.

Changed 2025. The upper casing macro used by \uppercaseheads has been changed back into
\MakeUppercase as it now provides all the features from the previously used textcase.

For the myheadings pagestyle above, you have to define your own titles to go into the
header. Each sectioning command, say \sec, calls a macro called \secmark. A pagestyle
usually defines this command so that it picks up the title, and perhaps the number, of the
\sec. The pagestyle can then use the information for its own purposes.

\markboth{(left) }{ (right)}
\markright{(right)}

\markboth sets the values of two markers to (left) and (right) respectively, at the point in
the text where it is called. Similarly, \markright sets the value of a marker to (right).

107

7. PAGINATION AND HEADERS

Table 7.1: The use of \thispagestyle

Called from Style
\book book
\chapter chapter
\cleardoublepage cleared
\cleartorecto cleared
\cleartoverso cleared
\epigraphhead epigraph
\listoffigures chapter
\listoftables chapter
\maketitle title
\part part
\tableofcontents chapter
thebibliography chapter
theindex chapter
titlingpage titlingpage
| \leftmark \rightmark \

The macro \leftmark contains the value of the (left) argument of the last \markboth on
the page. The macro \rightmark contains the value of the (right) argument of the first
\markboth or \markright on the page, or if there is not one it contains the value of the
most recent (right) argument.

A pagestyle can define the \secmark commands in terms of \markboth or
\markright, and then use \leftmark and/or \rightmark in the headers or footers. I'll
show examples of how this works later, and this is often how the myheadings style gets
implemented.

All the division commands include a macro that you can define to set marks related
to that heading. Other commands also include macros that you can redefine for setting
marks.

The \. . .mark commands are listed in Table 7.2. When they are called by the relevant
main macro, those that take an argument are called with the ‘title” as the argument’s value.
For example, the \chapter macro calls \chaptermark with the value of the title specified
as being for the header.

Please remember that the macros listed in Table 7.2 are ‘provider’ macros, i.e. they
provide information for \leftmark and \rightmark for you to use later on. To gain
access to the section title, you do not use \sectionmark in the header or footer. It is
a macro that provides information, but you need to use \leftmark or \rightmark to
access depending on how you have defined \sectionmark.

7.3 MAKING HEADERS AND FOOTERS

As mentioned, the class provides for left, center, and right slots in even and odd headers
and footers. This section describes how you can make your own pagestyle using these 12
slots. The 6 slots for a page are diagrammed in Figure 7.1.

108

7.3. Making headers and footers

Table 7.2: Mark macros for page headers

Main macro

default mark definition

\book (*) \newcommand*{\bookpagemark} [1] {}
\part (*) \newcommand*{\partmark}[1]{}
\chapter (*) \newcommand*{\chaptermark} [1]{}
\section(*) \newcommand*{\sectionmark}[1]{}
\subsection (*) \newcommand*{\subsectionmark}[1]{}
\subsubsection(*) \newcommand*{\subsubsectionmark} [1]{}
\paragraph (*) \newcommand*{\paragraphmark}[1]{}
\subparagraph (*) \newcommand*{\subparagraphmark}[1]{}
\tableofcontents(*) \newcommand*{\tocmark}{}
\listoffigures(*) \newcommand*{\lofmark}{}
\listoftables (*) \newcommand*{\lotmark}{}
\thebibliography \newcommand*{\bibmark}{}
\theindex \newcommand*{\indexmark}{}
\theglossary \newcommand*{\glossarymark}{}
\PoemTitle \newcommand*{\poemtitlemark}[1]{}
\PoemTitle* \newcommand*{\poemtitlestarmark} [1]{}
\runningwidth
left center right
\headrule
THE TYPE BLOCK
\footrule
left center right

Figure 7.1: Header and footer slots

109

7. PAGINATION AND HEADERS

The class itself uses the commands from this section. For example, the plain pagestyle
is defined as
\makepagestyle{plain}
\makeevenfoot{plain}{}{\thepage}{}
\makeoddfoot{plain}{}{\thepage}{}

which centers the page number at the bottom of the page.

\makepagestyle{(style)}
\aliaspagestyle{(alias)}{(original)}
\copypagestyle{(copy)}{(original)}

The command \makepagestyle specifies a pagestyle (style) which is initially equiv-
alent to the empty pagestyle. On the other hand, \aliaspagestyle defines the (alias)
pagestyle to be the same as the (original) pagestyle. As an example of the latter, the class
includes the code

\aliaspagestyle{part}{plain}
\aliaspagestyle{chapter}{plain}
\aliaspagestyle{cleared}{empty}

The \copypagestyle command creates a new pagestyle called (copy) using the (original)
pagestyle specification.

If an alias and a copy pagestyle are created based on the same (original) and later the
(original) is modified, the alias and copy behave differently. The appearance of the alias
pagestyle will continue to match the modified (original) but the copy pagestyle is unaf-
fected by any change to the (original). You cannot modify an alias pagestyle but you can
modify a copy pagestyle.

\makeevenhead{(style) }{ (left) }{ (center) }{ (right) }
\makeoddhead{(style) }{(left) }{(center) }{(right)}
\makeevenfootd{(style) }{(left) }{(center) }{(right)}
\makeoddfoot{(style) }{(left) }{{center)}{(right)}

The macro \makeevenhead defines the (left), (center), and (right) portions of the
(style) pagestyle header for even numbered (verso) pages. Similarly \makeoddhead,
\makeevenfoot, and \makeoddfoot define the (left), (center) and (right) portions of the
(style) header for odd numbered (recto) pages, and the footers for verso and recto pages.
These commands for (style) should be used after the corresponding \makepagestyle for

(style).
\makerunningwidth{(style)} [{footwidth)]{(headwidth)}
\headwidth

The macro \makerunningwidth sets the widths of the (style) pagestyle headers and foot-
ers. The header width is set to (headwidth). If the optional (footwidth) is present, then the
footer width is set to that, otherwise to (headwidth). The header width is stored as the
length \(style)headrunwidth and the footer width as \(style)footrunwidth.

The \makepagestyle initialises the widths to be the textwidth, so the macro need only
be used if some other width is desired. The length \headwidth is provided as a (scratch)
length that may be used for headers or footers, or any other purpose.

110

7.3. Making headers and footers

\makeheadrule{(style) }{ (width) }{(thickness)}
\makefootrule{(style) }{(width)}{(thickness)}{(skip)}
\makeheadfootruleprefix{(style)}{{for headrule)}{(for footrule)}

A header may have a rule drawn between it and the top of the typeblock, and simi-
larly a rule may be drawn between the bottom of the typeblock and the footer. The
\makeheadrule macro specifies the (width) and (thickness) of the rule below the (style)
pagestyle header, and the \makefootrule does the same for the rule above the footer;
the additional (skip) argument is a distance that specifies the vertical positioning of the
foot rule (see \footruleskip). The \makepagestyle macro initialises the (width) to
the \textwidth and the (thickness) to Opt, so by default no rules are visible. The macro
\makeheadfootruleprefix is intended for adding alternative colors to the head/foot
rules, e.g.

\makeheadfootruleprefix{mystyle}{\color{red}}{\color{blue}}

| \normalrulethickness \

\normalrulethickness is the normal thickness of a visible rule, by default 0.4pt. It can
be changed using \setlength, although I suggest that you do not unless perhaps when
using at least the 14pt class option.

\footruleheight
\footruleskip

The macro \footruleheight is the height of a normal rule above a footer (default zero).
\footruleskip is a distance sufficient to ensure that a foot rule will be placed between
the bottom of the typeblock and the footer. Despite appearing to be lengths, if you really
need to change the values use \renewcommand, not \setlength.

\makeheadposition{(style)}
{(eheadpos) }{ (oheadpos) }{(efootpos) }{ (ofootpos) }

The \makeheadposition macro specifies the horizontal positioning of the even and odd
headers and footers, respectively, for the (style) pagestyle. Each of the (...pos) arguments
may be flushleft, center, or flushright, with the obvious meanings. An empty, or
unrecognised, argument is equivalent to center. This macro is really only of use if the
header/footer width is not the same as the \textwidth.

| \makepsmarks{(style) }{(code)} |

The last thing that the \pagestyle{(style)} does is call the (code) argument of the
\makepsmarks macro for (style). If specified, this code will often redefine the various
macros that provide the automated data for the headers (or footers). For example how
\chapter makes the title and chapter number avaialble for the header. If no (code) is spec-
ified (or \makepsmarks is not setup for this (style), the providing macros already active
will be used.

| \makeheadfootstrut{(style)}{(head strut)}{{foot strut)} \

The headers and footers are each made up of three separate entities. At the front and end of
these a special (style) related strut is inserted. By default \makepagestyle will initialize
them to \strut (except the empty style where the struts are empty). One can use the
macro above to change these struts to something different.

111

7. PAGINATION AND HEADERS

* ok ok

Writing the (code) part for \makepsmarks can be very daunting, as you will be needing to
define most of the macros listed in Table 7.2
However, most uses are very similar, so we have provided some helper macros:

\createmarkq{(sec) }{(marks)}{(show)}{ (prefix) }{ {postfix)}

\createplainmark{(type) }{(marks)}{(text)}

\memUChead{(text)}

\uppercaseheads \nouppercaseheads

The macro \createmark{(sec)}{(marks)}{(show)}{(prefix)}{(postfix)} defines a new
macro \(sec)mark that will take one argument, where
(marks) is either left, right or both,

(sec) is a sectional division such as part, chapter, section, etc.,

(show) is one of the terms shownumber, nonumber or notitle. They control what is
available in the provided header text. The terms shownumber, nonumber control
whether the number is displayed within \mainmatter (under \frontmatter no
numbers are displayed.

The term notitle (which implies shownumber) will only show the number part
(including the (postfix) and (prefix) parts described below) and no title.

(pre-Ipostfix) are affixed before and after the division number.
For example:

\createmark{section}{left}{nonumber}{}{}
\createmark{section}{both}{nonumber}{}{}
\createmark{section}{right}{nonumber}{}{}

is equivalent to, respectively

\def\sectionmark#1{\markboth{\memUChead{#1}}{}}
\def\sectionmark#1{\markboth{\memUChead{#1}}{\memUChead{#1}}}
\def\sectionmark#1{\markight{\memUChead{#1}}}

whereas
\createmark{section}{left}{shownumber}{}{}

is equivalent to the following pseudo code

\def\sectionmark#1{\markboth{
\memUChead{
if secnumdepth > number:
if mainmatter:
prefix \thesection postfix
fi
fi
#1% aka the section title
}
H3}

and

112

7.3. Making headers and footers

\createmark{section}{left}{notitle}{}{}

is equivalent to the following pseudo code

\def\sectionmark#1{\markboth{
\memUChead{
if secnumdepth > number:
if mainmatter:
prefix \thesection postfix
fi
fi
}
H¥

The macro \createplainmark defines the \(type)mark, where (fype) is an unnumbered
division-like head, such as toc, 1of, index, using (text) as the mark value, and (marks) is
left, both or right. For example:

\createplainmark{toc}{left}{\contentsname}
\createplainmark{lot}{right}{\listtablename}
\createplainmark{bib}{both}{\bibname}

is equivalent to

\def\tocmark{\markboth{\memUChead{\contentsname}}{}}
\def\lotmark{\markright{\memUChead{\1listtablenamel}}}
\def\lofmark{\markboth{\memUChead{\bibname}}{\memUChead{\bibname}}}

Lastly the macro \memUChead is an internal macro handling the upper- or non-
uppercasing. Its definition is usually controlled using \uppercaseheads which sets
\memUChead to \MakeUppercase whereas \nouppercaseheads defines it to output the
argument unchanged. The class default is \uppercaseheads.

The class’ default page style is headings, which has the following setup for \makepsmarks
(slight pseudocode):
if twopage setup:

\makepsmarks{headings}{/
\createmark{chapter}{left}{shownumber}{\@chapapp\ }{. \ }
\createmark{section}{right}{shownumber}{}{. \ }
\createplainmark{toc}{both}{\contentsname}
\createplainmark{lof}{both}{\listfigurename}
\createplainmark{lot}{both}{\1listtablename}
\createplainmark{bib}{both}{\bibname}
\createplainmark{index}{both}{\indexname}
\createplainmark{glossary}{both}{\glossaryname}

}

else: Y, aka oneside

\makepsmarks{headings}{/

\createmark{chapter}{right}{shownumber}{\@chapapp\ }{. \ }

113

7. PAGINATION AND HEADERS

\createplainmark{toc}{right}{\contentsname}
\createplainmark{lof}{right}{\listfigurename}
\createplainmark{lot}{right}{\listtablename}
\createplainmark{bib}{right}{\bibname}
\createplainmark{index}{right}{\indexname}
\createplainmark{glossary}{right}{\glossaryname}
}
fi
Where \@chapapp is a special macro what equals \chaptername unless \appendix is
active, where it is then equal to \appendixname.
Note how the twosided setup only include marks for \chapter and \section and
onesided only for \chapter.

So what if we wanted to add support for \subsection to an already defined page style?
Use this:

[\addtopsmarks{(pagestyle) }{ (prepend) }{ {append) ¥ \
Here (prepend) and (append) is inserted before and after the current definition of
\makepsmarks for (pagestyle). So to answer our question we could use

\addtopsmarks{headings}{}{/

\createmark{subsection}{right}{shownumber}{}{. \spacel}}
\pagestyle{headings}

— always remember to activate the page style afterwards.

Note. Inmy (maintainer) own documents I normally change the chapter mark to use both instead
of Left. This is useful when no sections are used or the chapter has a very long intro.

\makeatletter

\addtopsmarks{headings}{}{/
\createmark{chapter}{both}{shownumber}{\@chapapp\ }{. \ }

}

\makeatother

\pagestyle{headings}

When the class runs the marks part of page style, it does not zero out old marks, i.e. if an
old \sectionmark exist, it still exist even if we do not change it. This is both a good and
a bad thing. To help users redefine these marks to doing nothing we provide

\clearplainmark{{type)}
\clearmark{(type)}

The used types are the same as for \createplainmark and \createmark.

7.3.1 Example pagestyles

Perhaps when preparing drafts you want to note on each page that it is a draft docu-
ment. Assuming that you are using the headings page style and that the default plain
page style is used on chapter openings, then you could define the following in the pream-
ble (\ifdraftdoc is provided by the class and is set true when the draft option is used).

114

7.3. Making headers and footers

\ifdraftdoc
\makeevenfoot{plain}{}{\thepage}{\textit{Draft: \today}}
\makeoddfoot{plain}{\textit{Draft: \today}}{\thepage}{}
\makeevenfoot{headings}{}{}{\textit{Draft: \today}}
\makeoddfoot{headings}{\textit{Draft: \today}}{}{}

\fi

Now when the draft option is used the word ‘Draft:” and the current date will be typeset
in italics at the bottom of each page by the spine margin. If any empty pages should be
marked as well, specify similar footers for that style as well.

Here is part of the standard definition of the headings pagestyle for the book class which
uses many internal LaTeX commands; but note that the class does not use this!

\def\ps@headings{/,
\let\@oddfoot\@empty\let\@evenfoot\@empty
\def\@evenhead{\thepage\hfil\slshape\leftmark}/
\def\@oddhead{{\slshape\rightmark}\hfil\thepagel}’
\def\chaptermark##1{J,

\markboth{\MakeUppercase{%
\ifnum\c@secnumdepth > \m@ne
\if@mainmatter
\@chapapp\ \thechapter. \ %
\fi
\fi
##13 3%
\def\sectionmark##1{/,
\markright{\MakeUppercase{/
\ifnum\c@secnumdepth > \z@
\thesection. \ %
\fi
##13}}1}

You don’t need to understand this but in outline the first three lines specify the contents of
the footers and headers, and the remainder of the code sets the marks that will be used in
the headers. The \1leftmark is specified to be the word ‘chapter’, followed by the number
if it is in the \mainmatter and the secnumdepth is such that chapters are numbered, fol-
lowed by the chapter’s title; all this is made to be in upper case (via the \MakeUppercase
macro). Similarly the other mark, \rightmark, is the section number, if there is one, and
the section’s title, again all in upper case.
A transliteration of this code into memoir’s original coding style is:

\makepagestyle{headings}
\makeevenhead{headings}{\thepage}{}{\slshape\leftmark}
\makeoddhead{headings}{\slshape\rightmark}{}{\thepage}
\makepsmarks{headings}{/
\def\chaptermark##1{/,
\markboth{\MakeUppercase{’
\ifnum\c@secnumdepth > \m@ne

115

7. PAGINATION AND HEADERS

\if@mainmatter
\@chapapp\ \thechapter. \ 7%
\fi
\fi
##133{}3}%
\def\sectionmark##1{/
\markright{\MakeUppercase{’
\ifnum\c@secnumdepth > \z@
\thesection. \ %
\fi
##13}}
\def\tocmark{\markboth{\MakeUppercase{\contentsname}}{}}
\def\lofmark{\markboth{\MakeUppercase{\listfigurename}}{}}
\def\lotmark{\markboth{\MakeUppercase{\listtablename}}{}}
\def\bibmark{\markboth{\MakeUppercase{\bibname}}{}}
\def\indexmark{\markboth{\MakeUppercase{\indexname}}{}}
\def\glossarymark{\markboth{\MakeUppercase{\glossaryname}}{}}}

As you can see, defining the marks for a pagestyle is not necessarily the simplest thing in
the world. With the extra tools described above, this code can be reduced to

\makepagestyle{headings}

\makeevenhead{headings}{\thepage}{}{\slshape\leftmark}

\makeoddhead{headings}{\slshape\rightmark}{}{\thepage}

\makepsmarks{headings}{/
\createmark{chapter}{left}{shownumber}{\@chapapp\ }{. \ }
\createmark{section}{right}{shownumber}{}{. \ }
\createplainmark{toc}{both}{\contentsname}
\createplainmark{lof}{both}{\listfigurename}
\createplainmark{lot}{both}{\listtablename}
\createplainmark{bib}{both}{\bibname}
\createplainmark{index}{both}{\indexname}
\createplainmark{glossary}{both}{\glossaryname}

}

Note that if you want to use a predefined page style, but would like to not use auto-
matic uppercasing, then issue \nouppercaseheads and reload the page style, for example
with the default page style in memoir

\nouppercaseheads
\pagestyle{headings}

Header with the document title

As mentioned before, some publishers like the title of the book to be in the header. A
simple header is probably all that is needed as it is unlikely to be a technical publication.
Here is a use for myheadings.

\makevenhead{myheadings}{\thepage}{}{DOCUMENT TITLE}
\makeoddhead{myheadings}{Chapter~\thechapter}{}{\thepage}

116

7.3. Making headers and footers

Part and chapter in the header

Some documents have both part and chapter divisions and in such cases it may be useful
for the reader to have the current part and chapter titles in the header. The headings
pagestyle can be easily modified to accomplish this by simply resetting the marks for part
and chapter:

\makepsmarks{headings}{%
\createmark{part}{left}{shownumber}{\partname\ }{. \ }
\createmark{chapter}{right}{shownumber}{\@chapapp\ }{. \ }
\createplainmark{toc}{both}{\contentsname}
\createplainmark{lof}{both}{\listfigurename}
\createplainmark{lot}{both}{\1listtablename}
\createplainmark{bib}{both}{\bibname}
\createplainmark{index}{both}{\indexname}
\createplainmark{glossary}{both}{\glossarynamel}}

The Companion pagestyle

This example demonstrates most of the page styling commands. In the LaTeX Companion
series of books [?, ?, ?] the header is wider than the typeblock, sticking out into the outer
margin, and has a rule underneath it. The page number is in bold and at the outer end of
the header. Chapter titles are in verso headers and section titles in recto headers, both in
bold font and at the inner margin. The footers are empty.

The first thing to do in implementing this style is to calculate the width of the headers,
which extend to cover any marginal notes.

\setlength{\headwidth}{\textwidth}
\addtolength{\headwidth}{\marginparsep}
\addtolength{\headwidth}{\marginparwidth}

Now we can set up an empty companion pagestyle and start to change it by specifying the
new header and footer width:

\makepagestyle{companion}
\makerunningwidth{companion}{\headwidth}

and specify the width and thickness for the header rule, otherwise it will be invisible.
\makeheadrule{companion}{\headwidth}{\normalrulethickness}

In order to get the header to stick out into the fore-edge margin, verso headers have to
be flushright (raggedleft) and recto headers to be flushleft (raggedright). As the footers are
empty, their position is immaterial.

\makeheadposition{companion}{flushright}{flushleft}{}{}

The current chapter and section titles are obtained from the \leftmark and
\rightmark macros which are defined via the \chaptermark and \sectionmark
macros. Remember that \leftmark is the last (left) marker and \rightmark is the first
(right) marker on the page.

Chapter numbers are not put into the header but the section number, if there is one, is
put into the header. We have to make sure that the correct definitions are used for these
as well as for the ToC' and other similar elements, and this is where the \makepsmarks

1The ToC and friends are described in detail in Chapter 9.

117

7. PAGINATION AND HEADERS

macro comes into play.

\makepsmarks{companion}{’
\nouppercaseheads
\createmark{chapter}{both}{nonumber}{}{}
\createmark{section}{right}{shownumber}{}{. \space}
\createplainmark{toc}{both}{\contentsname}
\createplainmark{lof}{both}{\listfigurename}
\createplainmark{lot}{both}{\1listtablename}
\createplainmark{bib}{both}{\bibname}
\createplainmark{index}{both}{\indexname}
\createplainmark{glossary}{both}{\glossaryname}

The preliminaries have all been completed, and it just remains to specify what goes
into each header and footer slot (but the footers are empty).

\makeevenhead{companion}y,
{\normalfont\bfseries\thepage}{}{%
\normalfont\bfseries\leftmark}
\makeoddhead{companion}
{\normalfont\bfseries\rightmark}{}{%
\normalfont\bfseries\thepage}

Now issuing the command \pagestyle{companion} will produce pages typeset with
companion pagestyle headers. This pagestyle is part of the class.

For instance, if you wanted \subsection titles to appear in the page headers of the
companion pagestyle then this would be a way of doing it:

\addtopsmarks{companion}{}{%
\createmark{subsection}{right}{shownumber}{}{. \spacel}}

The ruled pagestyle

For practical reasons I prefer a page style with headings where the chapter title is at least
in the center of the page, and for technical works is at the fore-edge. I also prefer the page
number to be near the outside edge. When picking up a book and skimming through it,
either to get an idea of what is in it or to find something more specific, I hold it in one hand
at the spine and use the other for flicking the pages. The book is half closed while doing
this and it’s much easier to spot things at the fore-edge than those nearer the spine. The
ruled page style is like this. The general plan is defined as:

\makepagestyle{ruled}

\makeevenfoot {ruled}{\thepage}{}{} % page numbers at the outside
\makeoddfoot {ruled}{}{}{\thepage}

\makeheadrule {ruled}{\textwidth}{\normalrulethickness}
\makeevenhead {ruled}{\scshape\leftmark}{}{} % small caps
\makeoddhead {ruled}{}{}{\rightmark}

The other part of the specification has to ensure that the \chapter and \section com-
mands make the appropriate marks for the headers. I wanted the numbers to appear in
the headers, but not those for sections. The following code sets these up, as well as the
marks for the other document elements.

118

7.3. Making headers and footers

\makepsmarks{ruled}{%
\nouppercaseheads
\createmark{chapter}{left}{shownumber}{}{. \space}
\createmark{section}{right}{nonumber}{}{}
\createplainmark{toc}{both}{\contentsname}
\createplainmark{lof}{both}{\listfigurename}
\createplainmark{lot}{both}{\listtablename}
\createplainmark{bib}{both}{\bibname}
\createplainmark{index}{both}{\indexname}
\createplainmark{glossary}{both}{\glossaryname}

7.3.2 Index headers

If you look at the Index you will see that the header shows the first and last entries on the
page. A main entry in the index looks like:

\item \idxmark{entry}, page number(s)
and in the preamble to this book \idxmark is defined as
\newcommand{\idxmark} [1] {#1\markboth{#1}{#1}}

This typesets the entry and also uses the entry as markers so that the first entry on a page
is held in \rightmark and the last is in \1leftmark.

As index entries are usually very short, the Index is set in two columns. Unfortunately
LaTeX’s marking mechanism can be very fragile on twocolumn pages.’

The index itself is called by

\clearpage

\pagestyle{index}

\renewcommand{\preindexhook}{%

The first page number is usually, but not always,
the primary reference to

the indexed topic.\vskip\onelineskip}
\printindex

The index pagestyle, which is the crux of this example, is defined here as:

\makepagestyle{index}
\makeheadrule{index}{\textwidth}{\normalrulethickness}
\makeevenhead{index}{\rightmark}{}{\leftmark}
\makeoddhead{index}{\rightmark}{}{\leftmark}
\makeevenfoot{index}{\thepage}{}{}
\makeoddfoot{index}{}{}{\thepage}

This, as you can hopefully see, puts the first and last index entries on the page into the
header at the left and right, with the folios in the footers at the outer margin.

7.3.3 Float pages
| \ifonlyfloats{(yes)}{(no)} |

2This was fixed in the IATEX kernel, but including the functionality from the fixItx2e package.

119

7. PAGINATION AND HEADERS

There are occasions when it is desirable to have different headers on pages that only con-
tain figures or tables. If the command \ifonlyfloats is issued on a page that contains
no text and only floats then the (yes) argument is processed, otherwise on a normal page
the (no) argument is processed. The command is most useful when defining a pagestyle
that should be different on a float-only page.

For example, assume that the companion pagestyle is to be generally used, but on float-
only pages all that is required is a pagestyle similar to plain. Borrowing some code from
the companion specification this can be accomplished like:

\makepagestyle{floatcomp}
% \headwidth has already been defined for the companion style
\makeheadrule{floatcomp}{\headwidth}/
{\ifonlyfloats{Opt}{\normalrulethickness}}
\makeheadposition{floatcomp}{flushright}{flushleft}{}{}
\makepsmarks{floatcomp}{\companionpshook}
\makeevenhead{floatcompl}y,
{\ifonlyfloats{}{\normalfont\bfseries\thepage}l}/
{34
{\ifonlyfloats{}{\normalfont\bfseries\leftmarkl}}
\makeoddhead{floatcompl}
{\ifonlyfloats{}{\normalfont\bfseries\rightmark}}%
{}%
{\ifonlyfloats{}{\normalfont\bfseries\thepage}}
\makeevenfoot{floatcomp}{}{\ifonlyfloats{\thepage}{}}{}
\makeoddfoot{floatcomp}{}{\ifonlyfloats{\thepage}{}}{}

The code above for the floatcomp style should be compared with that for the earlier com-
panion style.

The headrule is invisible on float pages by giving it zero thickness, otherwise it has the
\normalrulethickness. The head position is identical for both pagestyles. However,
the headers are empty for floatcomp and the footers have centered page numbers on float
pages; on ordinary pages the footers are empty while the headers are the same as the
companion headers.

The code includes one ‘trick’. The macro \makepsmarks{X}{code} is equivalent to

\newcommand{\Xpshook}{code}

I have used this knowledge in the line:

\makepsmarks{floatcomp}{\companionpshook}

which avoids retyping the code from \makepsmarks{companion}{...}, and ensures
that the code is actually the same for the two pagestyles.

| \mergepagefloatstyle{(style) }{(textstyle) }{{floatstyle)} |

If you have two pre-existing pagestyles, one that will be used for text pages and the other
that can be used for float pages, then the \mergepagefloatstyle command provides
a simpler means of combining them than the above example code for floatcomp. The
argument (style) is the name of the pagestyle being defined. The argument (textstyle) is the
name of the pagestyle for text pages and (floatstyle) is the name of the pagestyle for float-

120

7.3. Making headers and footers

only pages. Both of these must have been defined before calling \mergepagefloatstyle.
So, instead of the long winded, and possibly tricky, code I could have simply said:

\mergepagefloatstyle{floatcomp}{companion}{plain}

One author thought it would be nice to be able to have different page headings accord-
ing to whether the page was a floatpage, or there was a float at the top of the page, or a
float at the bottom of a page or there was text at the top and bottom.

This, I think, is not a common requirement and, further, that to provide this involves
changing parts of the LaTeX output routine — something only to be tackled by the bravest
of the brave. If it were to be done then were best done in a package that could be easily
ignored. The following is an outline of what might be done; I do not recommend it and if
you try this and all your work dissappears then on your own head be it.

% notefloat.sty
\newif\iffloatattop
\floatattopfalse
\newif\iffloatatbot
\floatatbotfalse

\renewcommand*{\@addtotoporbot}{/
\@getfpsbit \tw@
\ifodd \@tempcnta
\@flsetnum \@topnum
\ifnum \@topnum>\z@
\@tempswafalse
\@flcheckspace \@toproom \@toplist
\if@tempswa
\@bitor\@currtype{\@midlist\@botlistl}}
\if@test
\else
\@flupdates \@topnum \@toproom \@toplist
\@inserttrue
\global\floatattoptrue
\fi
\fi
\fi
\fi
\if@insert
\else
\@addtobot
\fi}

\renewcommand*{\@addtobot}{%
\@getfpsbit 4\relax
\ifodd \@tempcnta
\@flsetnum \@botnum
\ifnum \@botnum>\z@
\@tempswafalse

121

7. PAGINATION AND HEADERS

\@flcheckspace \@botroom \@botlist
\if@tempswa
\global \maxdepth \z@
\@flupdates \@botnum \@botroom \@botlist
\@inserttrue
\global\floatatbottrue
\fi
\fi
\fi}

\let\p@wold@output\@outputpage

\renewcommand*{\Qoutputpage}{’
\p@wold@output
\global\floatattopfalse
\global\floatatbotfalse}

\endinput

\floatattop is probably set true if there is a float at the top of the page and
\floatatbot is probably set true if there is a float at the bottom of the page.

7.4 THE SHOWLOCS PAGESTYLE

The showlocs pagestyle is somewhat special as it is meant to be used as an aid when
designing a page layout. Lines are drawn showing the vertical positions of the headers
and footers and a box is drawn around the textblock. It is implemented using two zero-
sized pictures.’

\framepichead
\framepictextfoot
\framepichook
\showheadfootlocoff
\showtextblockoff

The macro \framepichead creates a zero-sized picture that draws a line at the header
location, and the macro \framepictextfoot creates a zero-sized picture that draws a line
at the footer location and also draws a box around the typeblock. Following the declaration
\showheadfootlocoff the macros \framepichead and \framepictextfoot do not
draw lines showing the header and footer locations. The declaration \showtextblockoff
prevents \framepictextfoot from drawing a box around the textblock.

In case you want to change the color of the showlocs, simply do

\renewcommnand\framepichook{\color{red}}

If you generally want a box around the textblock you may want to create your own
pagestyle using \framepictextfoot and the showlocs code as a starting point, see memo
ir.cls for details.

3 A zero-sized picture starts off with begin{picture}(0,0)....

122

7.5. Other things to do with page styles

7.5 OTHER THINGS TO DO WITH PAGE STYLES

Back on page 114 we presented a way of adding some draft information. Here is a more
advanced example of this.

One interesting use for page styles is to provide extra information below the footer.
This might be some kind of copyright information. Or if your document is under version
control with a system like Subversion, and you have all your chapter laying in seperate
files, then why not add information at the start of very chapter, specifying who did the last
change to this chapter at which time. See the svn-multi package ([?]) and the PracTgX
Journal article [?] by the same author. Then this information can be added to the start of
every chapter using something like:

\usepackage [filehooks] {svn-multi}
\makeatletter
% remember to define a darkgray color
\newcommand\addRevisionData{’
\begin{picture}(0,0)%
\put (0,-10){%
\tiny%
\expandafter\@ifmtarg\expandafter{\svnfiledate}{}{/%
\textcolor{darkgray}{Chapter last updated
\svnfileyear/\svnfilemonth/\svnfileday
\enspace \svnfilehour:\svnfileminute\ (revision \svnfilerev)}
%
Y
\end{picturel}/,

}
\makeatother
% chapter is normally an alias to the plain style, we want to change
% it, so make it a real pagestyle
\makepagestyle{chapter}
\makeoddfoot{chapter}{\addRevisionData}{\thepage}{}
\makeevenfoot{chapter}{\addRevisionData}{\thepage}{}

123

Eight

Paragraphs and lists

Within a sectional division the text is typically broken up into paragraphs. Sometimes
there may be text that is set off from the normal paragraphing, like quotations or lists.

8.1 PARAGRAPHS

There are basically two parameters that control the appearance of normal paragraphs.

| \parindent \parskip \

The length \parindent is the indentation of the first line of a paragraph and the length
\parskip is the vertical spacing between paragraphs, as illustrated in Figure 8.1. The
value of \parskip is usually Opt, and \parindent is usually defined in terms of ems
so that the actual indentation depends on the font being used. If \parindent is set to a
negative length, then the first line of the paragraphs will be ‘outdented” into the lefthand
margin.

8.1.1 Block paragraph

A block paragraph is obtained by setting \parindent to Oem; \parskip should be set to
some positive value so that there is some space between paragraphs to enable them to be
identified. Most typographers heartily dislike block paragraphs, not only on aesthetical
grounds but also on practical considerations. Consider what happens if the last line of a
block paragraph is full and also is the last line on the page. The following block paragraph
will start at the top of the next page but there will be no identifiable space to indicate an
inter-paragraph break.

Preceding Text

\parindent i \parskip

Figure 8.1: Paragraphing parameters

125

8. PARAGRAPHS AND LISTS

It is important to know that LaTeX typesets paragraph by paragraph. For example, the
\baselineskip that is used for a paragraph is the value that is in effect at the end of the
paragraph, and the font size used for a paragraph is according to the size declaration (e.g.,
\large or \normalsize or \small) at the end of the paragraph, and the raggedness or
otherwise of the whole paragraph depends on the declaration (e.g., \centering) in effect
at the end of the paragraph. If a pagebreak occurs in the middle of a paragraph TeX will
not reset the part of the paragraph that goes onto the following page, even if the textwidths
on the two pages are different.

8.1.2 Hanging paragraphs

A hanging paragraph is one where the length of the first few lines differs from the length
of the remaining lines. (A normal indented paragraph may be considered to be a special
case of a hanging paragraph where ‘few = one’).

| \hangpara{(indent)}{(num)} ‘

Using \hangpara at the start of a paragraph will cause the paragraph to be hung.

If the length (indent) is positive the lefthand end of the lines will be indented but

if it is negative the righthand ends will be indented by the specified amount. If the
number (num), say N, is negative the first N lines of the paragraph will be indented while
if N is positive the N+1 th lines onwards will be indented. This paragraph was set with
\hangpara{3em}{-3}. There should be no space between the \hangpara command and
the start of the paragraph.

| \begin{hangparas}{(indent)}{(num)} text \end{hangparas} \

The hangparas environment is like the \hangpara command except that every para-
graph in the environment will be hung.

The code implementing the hanging paragraphs is the same as for the hanging pack-
age [?]. Examples of some uses can be found in [?].

As noted eleswhere the sectioning commands use the internal macro \@hangfrom as
part of the formatting of the titles.

| \hangfrom{(text)} |

The \hangfrom macro is provided as an author’s version of the internal \@hangfrom

macro used, among other things, in typesetting section titles.

Simple hung paragraphs (like this one) can be specified using the \hangfrom macro. The
macro puts (text) in a box and then makes a hanging paragraph
of the following material. This paragraph commenced with
\hangfrom{Simple hung paragraphs }(like ...
and you are now reading the result.

The commands for hanging paragraphs do not quite work as might be expected when
they are used in a list environment, for example inside an enumerate. If you wish for a
hanging paragraph inside such an environment you will have to define your own com-
mands for this. If you feel capable of doing so then, with my congratulations, move on
to the next section. If you are not so confident you could try using the following non-
guaranteed code, which is based on an idea by Patrik Nyman which he posted on CTT in
January 2004.

%\makeatletter

126

8.2. Flush and ragged

% A version of \hangpara for use in a list
% \listhanging{indent}{num} text text text ...
\def\listhanging#1#2#3\par{%
\@tempdima\textwidth \advance\@tempdima -\leftmargin
\parbox{\@tempdima}{\hangpara{#1}{#2}#3}\par}
% A version of \hangfrom for use in a list
% \listhangfrom{stuff} text text text ...
\def\listhangfrom#i#2\par{/,
\@tempdima\textwidth \advance\@tempdima -\leftmargin
\parbox{\@tempdima}{\Ghangfrom{#1}#2}\par}
%\makeatother

8.2 FLUSH AND RAGGED

Flushleft text has the lefthand end of the lines aligned vertically at the lefthand margin
and flushright text has the righthand end of the lines aligned vertically at the righthand
margin. The opposites of these are raggedleft text where the lefthand ends are not aligned
and raggedright where the righthand end of lines are not aligned. LaTeX normally typesets
flushleft and flushright.

\begin{flushleft} text \end{flushleft}
\begin{flushright} text \end{flushright}
\begin{center} text \end{center}

Text in a flushleft environment is typeset flushleft and raggedright, while in a
flushright environment is typeset raggedleft and flushright. In a center environment
the text is set raggedleft and raggedright, and each line is centered. A small vertical space
is put before and after each of these environments.

| \raggedleft \raggedright \centering \

The \raggedleft declaration can be used to have text typeset raggedleft and flushright,
and similary the declaration \raggedright causes typesetting to be flushleft and
raggedright. The declaration \centering typesets raggedleft and raggedright with each
line centered. Unlike the environments, no additional space is added.

| \centerfloat \

The contents of floats like tables or figures are usually centered and \centering should
be used for this, not the center environment which adds extra, usually undesired, vertical
space. For example:

\begin{figure}
\centering

\caption{...}

\end{figure}
However, if the float is wider than the textblock then it is aligned with the left margin
and extends into the right margin. The command \centerfloat is a special version of
\center that when used in a wide float will center it with respect to the textblock, i.e.,
it will extend equally into both margins. Note that \centerfloat needs to be applied

127

8. PARAGRAPHS AND LISTS

Typeset Example 8.1: Setting the source of a quotation

This quotation has a short last line so there there is enough space for the
source to be set at the end of the line. I. M. Short

The last line of this quotation turns out to be too long for the source to be
set at the end, so it is automatically set flushright on the following line.
N. O. Space

where there is a known width; if applied to a regular text paragraph it will center the
paragraph but put all the text on one line.

\raggedyright [(space)]
\ragrparindent

When using \raggedright in narrow columns the right hand edge tends to be too ragged,
and paragraphs are not indented. Text set \raggedyright usually fills more of the avail-
able width and paragraphs are indented by \ragrparindent, which is initially set to
\parindent. The optional (space) argument, whose default is 2em, can be used to adjust
the amount of raggedness. As examples:

\raggedyright [Opt] 7% typeset flushright
\raggedyright [1fil] J, same as \raggedright
\raggedyright[0.5em] 7 less ragged than \raggedright

Remember that LaTeX typesets on a per-paragraph basis, so that putting the sequence
of \centering, \raggedleft declarations in the same paragraph will cause the entire
paragraph to be typeset raggedleft and flushright — the \centering declaration is not
the one in effect at the end of the paragraph.

8.3 QUOTATIONS

LaTeX provides two environments that are typically used for typesetting quotations.

\begin{quote} text \end{quote}
\begin{quotation} text \end{quotation}

In both of these environments the text is set flushleft and flushright in a measure that
is smaller than the normal textwidth. The only difference between the two environments
is that paragraphs are not indented in the quote environment but normal paragraphing is
used in the quotation environment.

| \sourceatright [({length)]{(text)} \

Some quotations are completed by giving the source or author. Using \sourceatright
at the end of the quotation will typeset (text) flushright at the end of the line if there is
enough space, otherwise it typesets it flushright on the next line. A space (length) (default
2em) is left between the end of the quote and (text).

128

8.4. Some less common paragraph shapes

Source for Example 8.1

\begin{quotation}

This quotation has a short last line so there there is enough space
for the source to be set at

the end of the line.\sourceatright{I. M. Short}

\end{quotation}

\begin{quotation}

The last line of this quotation turns out to be too long for

the source to be set at the end, so it is automatically

set flushright on the following line.\sourceatright{N. 0. Space}
\end{quotation}

8.4 SOME LESS COMMON PARAGRAPH SHAPES

The paragraph shapes described in this section are based on a series that I presented in my
Glisterings column [?, ?]. Like the earlier \centering, etc., paragraph style declarations,
the style that applies is the one in effect at the end of the paragraph. Thus the general usage
is:

\bgroup’ a group to keep changes local % or could be { or \begin...
\paragraphstyle
. text
\par’ ensure the end of a paragraph
\egroup/ end the group % or could be } or \end...

If you use one of these paragraph shapes then using \\ to break a line may give a
surprising result. If so, the following may help.

\atcentercr
\break

\memorigdbs
\memorigpar

You could try \atcentcr, which is user level version of an internal LaTeX command used
in some paragraph settings for line breaking, or \break, which is a TeX command to end
a line.

In some cases the paragraph shaping commands change the definitions of \\ or \par.
Just in case you need to restore them, copies of the original definitions are in \memorigdbs
(for \\) and \memorigpar (for \par).

[\flushleftright \

If you use one of the shapes listed later in this section and things go wrong, the dec-
laration \flushleftright returns all paragraphing parameters' to their normal values,
thus producing paragraphs as normal — justified left and right with the last line flushleft
and raggedright.

1Except for the \parindent, which it leaves at its current value.

129

8. PARAGRAPHS AND LISTS

Typeset Example 8.2: Paragraph’s line not too short

The last line of this paragraph will be no shorter than a particular length. abcde
fghi

The last line of this paragraph will be no shorter than a particular length. abcdefg
hijk

8.4.1 Last line not short
On occasion a paragraph may end with a single short word as the last line.
| \linenottooshort [{length)] \

Following the \1inenottooshort declaration paragraphs will be set as normal, except
that the last line will not be shorter than (length) (default 2em).

Source for Example 8.2

\linenottooshort [4em]
The last line of this paragraph will be no shorter than a particular
length. abcdefghi% jklmn

The last line of this paragraph will be no shorter than a particular
length. abcdefghijk%lmn

8.4.2 Russian typography

Apparently in the Russian typographic tradition the last line of a multiline paragraph must
either be at least as long as the \parindent and have at least \parindent at the end, or
it must fill the whole line (i.e., flushleft and flushright).

| \russianpar \

Ending a paragraph with \russianpar causes it to be set following Russian typographic
rules.

If you have many such paragraphs it may be more convenient to do it like:
\let\par\russianpar
. many paragraphs
\let\par\memorigpar

or as:

\begingroup), start a group
\let\par\russianpar

. many paragraphs
\endgroup’ end the group

130

8.4. Some less common paragraph shapes

Typeset Example 8.3: Rules for spaces

The last line of this paragraph will be be set by ending it with a rule to fill up any
space.

8.4.3 Fill with rules

In some legal documents there must be no space at the end of the lines in order to prevent
anyone inserting something at a later date. Typically it is only the last line in a paragraph
that needs this treatment.
\lastlinerulefill
\lastlineparrule

Source for Example 8.3

The last line of this paragraph will be be set by ending it with
a rule to fill up any space.\lastlinerulefill

Using \lastlinerulefill to end a paragraph will cause any spaces at the ends of
the lines to be filled with the \lastlineparrule rule. If you have many paragraphs of
this kind then try:

\let\par\lastlinerulefill
. many paragraphs
\let\par\memorigpar

Remember that LaTeX treats many constructs (like section headings or captions) as para-
graphs, so you may have to alternate between filled text paragraphs and regular para-
graphing.

8.4.4 Some ragged paragraphs

A few paragraph shapes with unusual ragged lines are available.

\justlastraggedleft
\raggedrightthenleft
\leftcenterright

Following the \ justlastraggedleft declaration paragraphs will be set justified ex-
cept the last line will be set raggedleft.

Following the declaration \raggedrightthenleft paragraphs will be set with the
first line raggedright and the remainder set raggedleft.

Following the declaration \leftcenteright paragraphs will be set with the first
line flushleft (and raggedright) and the last line flushright (and raggedleft) and those
in the middle will be centered. This declaration should be used within a group; also
\everypar{} should be called at the end.

131

8. PARAGRAPHS AND LISTS

Typeset Example 8.4: Ragged paragraphs

Paragraphs following the \ justlastraggedleft declaration, as this one does, have
their lines justified except for the last which is set raggedleft. The demonstration works
best if there are three or more lines.
This paragraph is set following the \raggedrightthenleft declaration. The first
line is set raggedright and all the remaining lines are set raggedleft. The
demonstration is better if there are three or more lines.
This paragraph is set following the \1eftcenterright declaration. We really need
three,
or four may be better,
lines to show the effect of this.

Source for Example 8.4

\justlastraggedleft

Paragraphs following the \verb?\justlastraggedleft? declaration, as
this one does, have their lines justified except for the last which
is set raggedleft. The demonstration works best if there are three
or more lines.

\raggedrightthenleft

This paragraph is set following the \verb?\raggedrightthenleft?
declaration. The first line is set raggedright and all the remaining

lines are set raggedleft. The demonstration is better if there are three or
more lines.

\leftcenterright

This paragraph is set following the \verb?\leftcenterright?
declaration. We really need three, \\ or four may be better, \\
lines to show the effect of this.

\everypar{}

8.4.5 Left spring right

Typically the lines of a paragraph are both flushleft and flushright and filled with text, but
sometimes filling is not desired.

| \leftspringright{(lfrac)}{(rfrac)}{(ltext)}{(rtext)} \
The \leftspringright macro sets (ltext) flushleft and raggedright in a column whose
width is (Ifrac) of the textwidth and, in parallel, it also sets (rtext) raggedleft and flushright

in a column that is (rfrac) of the textwidth; the effect is as though there are springs between
the lines of the two texts. The sum of (Ifrac) and (rfac) must be less than one.

132

8.5. Changing the textwidth

Typeset Example 8.5: A sprung paragraph

Text at the left is set But the text at the right is set raggedleft and
flushleft and raggedright. flushright. It’s as though there was a spring pushing
the lines apart.

Source for Example 8.5

\leftspringright{0.3}{0.6}Y%
{Text at the left is set flushleft and raggedright.}
{But the text at the right is set raggedleft and flushright.
It’s as though there was a spring pushing the lines apart.}

8.5 CHANGING THE TEXTWIDTH

The quote and quotation environments both locally change the textwidth, or more pre-
cisely, they temporarily increase the left and right margins by equal amounts. Generally
speaking it is not a good idea to change the textwidth but sometimes it may be called for.

The commands and environment described below are similar to those in the originally
found in the chngpage package, but do differ in some respects.

\begin{adjustwidth}{(left)}{(right)} text \end{adjustwidth}
\begin{adjustwidth*}{(left) }{(right)} text \end{adjustwidth*}
The adjustwidth environment temporarily adds the length (left) to the lefthand margin
and (right) to the righthand margin. That is, a positive length value increases the margin
and hence reduces the textwidth, and a negative value reduces the margin and increases
the textwidth. The quotation environment is roughly equivalent to

\begin{adjustwidth}{2.5em}{2.5em}

The starred version of the environment, ad justwidthx, is really only useful if the left
and right margin adjustments are different. The starred version checks the page number
and if it is odd then adjusts the left (spine) and right (outer) margins by (left) and (right)
respectively; if the page number is even (a verso page) it adjusts the left (outer) and right
(spine) margins by (right) and (left) respectively.

’ \strictpagecheck \easypagecheck \

Odd/even page checking may be either strict (\strictpagecheck) or easy (or one
might call it lazy) (\easypagecheck). Easy checking works most of the time but if it fails
at any point then the strict checking should be used.

133

8. PARAGRAPHS AND LISTS

As an example, if a figure is wider than the textwidth it will stick out into the righthand
margin. It may be desireable to have any wide figure stick out into the outer margin where
there is usually more room than at the spine margin. This can be accomplished by

\begin{figure}

\centering

\strictpagecheck
\begin{adjustwidth*}{0em}{-3em}
% the illustration
\caption{...}
\end{adjustwidthx*}

\end{figure}

A real example in this manual is Table 10.1 on page 185, which is wider than the type-
block. In that case I just centered it by using adjustwidth to decrease each margin equally.
In brief, like

\begin{table}
\begin{adjustwidth}{-1cm}{-1cm}
\centering

\end{adjustwidth}
\end{table}

Note that the adjustwidth environment applies to complete paragraphs; you can’t
change the width of part of a paragraph except for hanging paragraphs or more esoter-
ically via \parshape. Further, if the adjusted paragraph crosses a page boundary the
margin changes are constant; a paragraph that is, say, wider at the right on the first page
will also be wider at the right as it continues onto the following page.

The center environment horizontally centers its contents with respect to the type-
block. Sometimes you may wish to horizontally center some text with respect to the phys-
ical page, for example when typesetting a colophon which may look odd centered with
respect to the (unseen) typeblock.

The calculation of the necessary changes to the spine and fore-edge margins is simple.
Using the same symbols as earlier in §2.4 (P, and B,, are the width of the trimmed page
and the typeblock, respectively; S and E are the spine and fore-edge margins, respectively)
then the amount M to be added to the spine margin and subtracted from the fore-edge
margin is calculated as:

M=

(Py —By)— S

For example, assume that the \textwidth is 5 inches and the \spinemargin is 1 inch.
On US letterpaper (\paperwidth is 8.5 inches) the fore-edge margin is then 2.5 inches,
and 0.75 inches? must be added to the spine margin and subtracted from the fore-edge to
center the typeblock. The adjustwidth environment can be used to make the (temporary)

change.
\begin{adjustwidth*}{0.75in}{-0.75in} ...

| \calccentering{(length)}

20n A4 paper the result would be different.

134

8.6. Lists

If you don’t want to do the above calculations by hand, \calccentering will do it for
you. The (length) argument must be the name of a pre-existing length command, including
the backslash. After calling \calccentering, (length) is the amount to be added to the
spine margin and subtracted from the foredge margin to center the typeblock. An example
usage is

\calccentering{\mylength}

\begin{adjustwidth*}{\mylength}{-\mylength}

text horizontally centered on the physical page

\end{adjustwidth*}

You do not necessarily have to define a new length for the purposes of
\calccentering. Any existing length will do, such as \unitlength, provided it will
be otherwise unused between performing the calculation and changing the margins (and
that you can, if necessary reset it to its original value — the default value for \unitlength
is 1pt).

8.6 LISTS

Recommended alternative
The class does not provide high level interfaces to configure the appearance of lists. We
provide some simple tools to adjust vertical spacing, described below.
Users seeking more control can have a look at the excellent enumitem package by Javier
Bezos. If loaded as
\usepackage [shortlabels]{enumitem}
then our

\begin{enumerate}[i)]
\item \label{item:tst}

syntax will also work out of the box.

One key difference: In the class \ref{item:tst} will give you ‘i’, whereas, if enumitem
is loaded the full formatting is returned from the cross reference, i.e., ‘i)’. This is fully
configurable in enumitem.

Note that, \tightlists, \defaultlists, \firmlists, \firmlists* presented be-
low, are not supported by enumitem, it provides a high level key based interface instead.

Tip: If you use the the new kernel environment hooks (see [?], or use
\AtBeginEnvironment from etoolbox), then you can e.g. add default formatting of
enumerate to all of your theorem constructions and then there is no need to use

\begin{enumerate}[(a)]

every single time, because you wanted lists use use letters inside theorems, and something
else outside. Run this for each theorem like env.

\AddToHook{env/theorem/begin}
{\setlist [enumerate] {label=\textup{(\alph*)}}}

135

8. PARAGRAPHS AND LISTS

The enumitem package even allows you to add your own keys to load entire collections of
keys. Hightly recommended package.

Standard LaTeX provides four kinds of lists. There is a general 1ist environment
which you can use to define your own particular kind of list, and the description,
itemize and enumerate lists (which are internally defined in terms of the general 1ist
environment?).

This class provides the normal description list, plus a couple of others of the same
kind, but the itemize and enumerate lists are extended versions of the normal ones.

\begin{description} \item[(label)] ... \end{description}
\begin{blockdescription} \item[(label)] ... \end{blockdescription}
\descriptionlabel(label)

\blockdescriptionlabel label)

In a description list an \item’s (label) is typeset by descriptionlabel. The default
definition is

\newcommand*{\descriptionlabel}[1]{\hspace\labelsep
\normalfont\bfseries #1}

which gives a bold label. To have, for example, a sans label instead, do

\renewcommand*{\descriptionlabel}[1]{\hspace\labelsep
\normalfont\sffamily #1}

The only noticeable difference between a description list and a blockdescription
list is that the latter is set as indented block paragraphs; invisibly, it also has its own
\blockdescriptionlabel.

\begin{labelled}{(name)} \item[(label)] ... \end{labelled}
\begin{flexlabelled}{(name)}{(labelwidth)}{(labelsep)}{ (itemindent)}%
{(leftmargin) }{(rightmargin)}

\item[(label)] ... \end{flexlabelled}

The 1abelled environment is like the description environment except that you can
specify the label format via the (name) argument where \name is the formatting macro. For
example, if you wanted the item labels set in italics, then

\newcommand*{\itlabel}[1]{\hspace\labelsep \normalfont\itshape #1}
\begin{labelled}{itlabel}
\item[First]

The flexlabelled environment adds additional controls to the 1abelled one. The
(name) argument is the same as that for labelled and the remainder are lengths that
correspond to the dimensions shown in Figure 8.2. If you want any of the dimensions
to retain their current values, use * instead of a length as the value for that particular
argument.

3The quote and quotation environments are also defined in terms of the general 1ist environment. You
may be surprised where it crops up.

136

8.6. Lists

Typeset Example 8.6: Smallcap quote style description list

This example shows how the f1lexlabelled list can be used to change the formatting
of a description-like list.
FIRST The labels should be typeset using smallcaps and the first paragraph
should be set as block paragraph.
Further paragraphs completing an \item’s descriptive text will be set with
the normal paragraph indent.
SECOND The list should be indented from each margin like the quote and
quotation environments.
More major changes to a description-like list will probably involve writing the code for
a new environment.

Source for Example 8.6

This example shows how the \texttt{flexlabelled} list can be used to

change the formatting of a description-like list.

\newcommand*{\sclabel}[1]{\normalfont\scshape #1}

\begin{flexlabelled}{sclabel}{Opt}{0.5em}{0.5em}{*}{\leftmargin}

\item[First] The labels should be typeset using smallcaps and the first
paragraph should be set as block paragraph.

Further paragraphs completing an \cs{item}’s descriptive text
will be set with the normal paragraph indent.
\item[Second] The list should be indented from each margin like the
\texttt{quote} and \texttt{quotation} environments.
\end{flexlabelled}
More major changes to a description-like list will probably involve writing
the code for a new environment.

The itemize and enumerate environments below are based on the enumerate pack-
age [?].
| \begin{itemize} [(marker)] \item ... \end{itemize} \

The normal markers for \items in an itemize list are:
1. bullet (e\textbullet),

2. bold en-dash (- \bfseries\textendash),
3. centered asterisk (+*\textasteriskcentered), and
4

. centered dot (-\textperiodcentered).

137

8. PARAGRAPHS AND LISTS

The optional (marker) argument can be used to specify the marker for the list items in a
particular list. If for some reason you wanted to use a pilcrow symbol as the item marker
for a particular list you could do

\begin{itemize} [\P]

\item ...

| \begin{enumerate} [(style)] \item ... \end{enumerate} \

The normal markers for, say, the third item in an enumerate list are: 3., c., iii., and C. The
optional (style) argument can be used to specify the style used to typeset the item counter.
An occurrence of one of the special characters 4, a, I, i or 1 in (style) specifies that the
counter will be typeset using uppercase letters (4), lowercase letters (a), uppercase Roman
numerals (I), lowercase Roman numerals (i), or arabic numerals (1). These characters may
be surrounded by any LaTeX commands or characters, but if so the special characters must
be put inside braces (e.g., {a}) if they are to be considered as ordinary characters instead
of as special styling characters. For example, to have the counter typeset as a lowercase
Roman numeral followed by a single parenthesis

\begin{enumerate}[i)]

\tightlists \defaultlists
\firmlists \firmlistsx*

The normal LaTeX description, itemize and enumerate lists have an open look
about them when they are typeset as there is significant vertical space between the items
in the lists. After the declaration \tightlists is issued, the extra vertical spacing be-
tween the list items is deleted. The open list appearance is used after the \defaultlists
declaration is issued. These declarations, if used, must come before the relevant list
environment(s). The class initially sets \defaultlists. This manual, though, uses
\tightlists. The spacing following the \firmlists declaration is intermediate be-
tween \defaultlists and \tightlists. The starred version, \firmlistsx*, allows
sligthly less space around the lists when they are preceded by a blank line than does the
unstarred \firmlists.

Caveat. Due to the manner in which \small and \footnotesize are implemented,
\tightlists and \firmlists will have no effect on lists typeset under \small or
\footnotesize.

A comprehensible solution can be done via the enumitem package via

% \tightlists equivalent
\usepackage [shortlabels]{enumitem}
\setlist{ noitemsep }

[\firmlist \tightlist \

The command \firmlist or \tightlist can be used immediately after the start of a list
environment to reduce the vertical space within that list. The \tightlist removes all the
spaces while the \firmlist produces a list that still has some space but not as much as in
an ordinary list.

138

8.6. Lists

Preceding Text

\topsep + \parskip [+ \partdpsep]
I

\labelwidth
<«—— \labelsep

Labell™

Y

— Item 1
itemindent

\listparindent \parsep

_ Y

I
|
I
|
I
|
I
|
I
|
I
|
\leftmargin \rightmargin
|
I
|
I
|
I
|
|
|
|
|
|

Item 1, Paragraph 2 <

Y

\itemsep + \parsep

Labell

Ttem 2

I
\topsep + \parskip [+ \partopsep]
I

Y

Following Text

Figure 8.2: The layout parameters for general lists

139

8. PARAGRAPHS AND LISTS

| \begin{list}{(default-label)}{(code)} items \end{list} \

LaTeX’s list environments are defined in terms of a general 1ist environment; some other
environments, such as the quote, quotation and adjustwidth are also defined in terms
of a list. Figure 8.2 shows the parameters controlling the layout of the 1ist environment.

The 1ist environment takes two arguments. The (default-label) argument is the code
that should be used when the \item macro is used without its optional (label) argu-
ment. For lists like enumerate this is specified but often it is left empty, such as for the
adjustwidth environment.

The (code) argument is typically used for setting the particular values of the list lay-
out parameters. When defining your own types of lists it is advisable to set each of the
parameters unless you know that the default values are suitable for your purposes. These
parameters can all be modified with either the \setlength or \addtolength commands.

As an example, here is the specification for a description-like list that uses an italic
rather than bold font for the items, and is somewhat tighter than the normal description
list.

%hhhh An italic and tighter description environment
\newcommand{\itlabel}[1]{\hspace\labelsep\normalfont\itshape #1}
\newenvironment{itdesc}{/
\list{}{%
\setlength{\labelsep}{0.5em}
\setlength{\itemindent}{Opt}
\setlength{\leftmargin}{\parindent}
\setlength{\labelwidth}{\leftmargin}
\addtolength{\labelwidth}{-\labelsep}
\setlength{\listparindent}{\parindent}
\setlength{\parsep}{\parskip}
\setlength{\itemsep}{0.5\onelineskip}
\let\makelabel\itlabel}}{\endlist}

This gets used like any other list:

\begin{itdesc}
\item[labell]
\end{itdesc}

Here is another kind of list called symbols that might be used for a list of symbols or
other similar kind of listing.

% Symbol list
\newenvironment{symbols}/,
{\1ist{}), empty label
{\setlength{\topsep}{\baselineskip}

\setlength{\partopsep}{Opt}
\setlength{\itemsep}{0.5\baselineskip}
\setlength{\parsep}{Opt}
\setlength{\leftmargin}{2em}
\setlength{\rightmargin}{Oem}
\setlength{\listparindent}{1iem}
\setlength{\itemindent}{Oem}

140

8.6. Lists

Typeset Example 8.7: Changing space before and after lists

This example shows that the space around the
CENTER AND OTHER LIST ENVIRONMENTS

can be minimised by using the
\zerotrivseps declaration.
The normal spacing can be restored by using the

\restoretrivseps command.

An alternative is to use the \centering macro.

\setlength{\labelwidth}{Oem}
\setlength{\labelsep}{2em}}1}/
{\endlist}
\newcommand{\symb} [1]{\item [#1] \mbox{}\\\nopagebreak}

In this case it gets used like this

\begin{symbols}
\symb{SYMBOL 1} definition
\symb{SYMBOL 2} ...
\end{symbols}

In the code for the symbols list I used the command forms (i.e., \1ist and \endlist)
for specifying the start and end of a list. It is a matter of taste whether you use the com-
mand or \begin{...} and \end{. ..} forms, but the latter does make it more obvious
that an environment is being dealt with.

Several LaTeX environments are defined in terms of a very simple list, called a
trivlist. Such a list has little internal structure but like the 1ist environment the ver-
tical space before and after a trivlist (or any list based on it) is set by \topsep and
\partopsep, as shown in Figure 8.2.

] \zerotrivseps \savetrivseps \restoretrivseps \

The center environment is one of several that is based on a trivlist, and so has space
before and after it. If you don’t want this the \zerotrivseps declaration eliminates those
spaces. You can think of it as being defined as:

\newcommand*{\zerotrivseps}{/,
\setlength{\topsep}{Opt}/
\setlength{\partopsep}{Opt}}

Before doing this, though, you might consider calling \savetrivseps which stores the
current values of \topsep and \partopsep; it is initially defined to store the default val-
ues. The command \restoretrivseps sets the current values of these lengths to the ones
saved by \savetrivseps.

141

8. PARAGRAPHS AND LISTS

Source for Example 8.7

This example shows that the space around the

\begin{center}

CENTER AND OTHER LIST ENVIRONMENTS
\end{center}

can be minimised by using the \zerotrivseps
\begin{center}

\verb?\zerotrivseps? declaration.
\end{center}

The normal spacing can be restored by using the \restoretrivseps
\begin{center}

\verb?\restoretrivseps? command.
\end{center}

An alternative is to use the \verb?\centering? macro.

Among the environments defined in terms of a trivlist are: flushleft, center,
flushright, verbatim, and others. Example 8.7 shows how it is possible to change the
spacing around the center environment, but it applies equally to the other environments.

142

Nine

Contents lists

This chapter describes how to change the appearance of the Table of Contents (ToC) and
similar lists like the List of Figures (LoF). In the standard classes the typographic design of
these is virtually fixed as it is buried within the class definitions.

As well as allowing these lists to appear multiple times in a document, the memoir class
gives handles to easily manipulate the design elements. The class also provides means for
you to define your own new kinds of “List of...”.

The functionality described is equivalent to the combination of the tocloft and
tocbibind packages [?, ?].

\tableofcontents \tableofcontents*
\listoffigures \listoffigures*
\listoftables \listoftablesx*

The commands \tableofcontents, \listoffigures and \listoftables typeset,
repectively, the Table of Contents (ToC), List of Figures (LoF) and List of Tables (LoT).
In memoir, unlike the standard classes, the unstarred versions add their respective titles
to the ToC. The starred versions act like the standard classes” unstarred versions as they
don’t add their titles to the ToC.

This chapter explains the inner workings behind the ToC and friends, how to change
their appearance and the apperance of the entries, and how to create new ‘List of...". If
you don’t need any of these then you can skip the remainder of the chapter.

9.1 GENERAL TOC METHODS

In §9.2 we will provide the class configuration interface for the various parts of the ToC.

In order to understand how these macros are used, we start by providing some back-
ground information this is a general description of how the standard LaTeX classes process
a Table of Contents (ToC). As the processing of List of Figures (LoF) and List of Tables (LoT)
is similar I will just discuss the ToC. You may wish to skip this section on your first reading.

The basic process is that each sectioning command writes out information about itself
— its number, title, and page — to the toc file. The \tableofcontents command reads
this file and typesets the contents.

First of all, remember that each sectional division has an associated level as listed in
in Table 6.1 on page 77. LaTeX will not typeset an entry in the ToC unless the value of
the tocdepth counter is equal to or greater than the level of the entry. The value of the
tocdepth counter can be changed by using \setcounter or \settocdepth.

| \addcontentsline{({file)}{(kind)}{(text)} \

143

9. CONTENTS LISTS

LaTeX generates a toc file if the document contains a \tableofcontents com-
mand. The sectioning commands' put entries into the toc file by calling the
\addcontentsline command, where (file) is the file extension (e.g., toc), (kind) is
the kind of entry (e.g., section or subsection), and (text) is the (numbered) title
text. In the cases where there is a number, the (fext) argument is given in the form
{\numberline{number}title text}.

| \contentsline{(kind)}{(text)}{(page)}{} |

The \addcontentsline command writes an entry to the given file in the form:
\contentsline{ (kind)}{(text)}{(page) }{}
where (page) is the page number. The empty arg is preparation for hyperref, and will then
normally contain the target for the entry.

For example, if \section{Head text} was typeset as ‘3.4 Head text’ on page 27, then
there would be the following entry in the toc file:

\contentsline{section}{\numberline{3.4} Head text}{27}{}

Extracts from toc, 1of and 1ot files are shown in Figure 9.1.

For each (kind) that might appear in a toc (lof, lot) file, LaTeX provides a command:
\1@kind{(title) }{(page)}
which performs the actual typesetting of the \contentsline entry.

\@pnumwidth{(length)}
\@tocrmarg{(length)}
\@dotsep{(number)}

The general layout of a typeset entry is illustrated in Figure 9.2. There are three internal
LaTeX commands that are used in the typesetting. The page number is typeset flushright in
a box of width \@pnumwidth, and the box is at the righthand margin. If the page number
is too long to fit into the box it will stick out into the righthand margin. The title text
is indented from the righthand margin by an amount given by \@tocrmarg. Note that
\@tocrmarg should be greater than \@pnumwidth. Some entries are typeset with a dotted
leader between the end of the title title text and the righthand margin indentation. The
distance, in math units® between the dots in the leader is given by the value of \@dotsep.
In the standard classes the same values are used for the ToC, LoF and the LoT.
The standard values for these internal commands are:

e \@pnumwidth = 1.55em

e \@tocrmarg =2.55em

e \@dotsep =45
The values can be changed by using \renewcommand, in spite of the fact that the first two
appear to be lengths.

Dotted leaders are not available for Part and Chapter ToC entries.

] \numberline{(number)} ‘

Each \1@kind macro is responsible for setting the general indent from the lefthand mar-
gin, and the numwidth. The \numberline macro is responsible for typesetting the number

!For figures and tables it is the \caption command that populates the 1of and 1ot files.
2There are 18mu to lem.

144

9.1. General ToC methods

Parts of a toc file:

\contentsline{section}{\numberline{10.1}The spread}{77}{}
\contentsline{section}{\numberline{10.2}Typeblock}{89}{}
\contentsline{subsection}{\numberline{10.2.1}Color}{77}{}

\contentsline{chapter}{Index}{226}{}

Part of a 1of file:

\contentsline{figure}{\numberline{8.6}Measuring scales}{56}{}
\addvspace{10pt}

\addvspace{10pt}

\contentsline{figure}{\numberline{10.1}Two subfigures}{62}{}
\contentsline{subfigure}{\numberline{(a)}Subfigure 1}{62}{}
\contentsline{subfigure}{\numberline{(b)}Subfigure 2}{62}{}

Part of a 1ot file:

\contentsline{table}{\numberline{1.7}Font declarations}{11}{}
\contentsline{table}{\numberline{1.8}Font sizes}{13}{}
\addvspace

\contentsline{table}{\numberline{3.1}Division levels}{21}{}

Figure 9.1: Example extracts from toc, 1lof and lot files

Y

\linewidth
indent numwidth \@pnumwidth
3.5 Heading title
continue title
title end e e 487

L

\@dotsep \@tocrmarg

Figure 9.2: Layout of a ToC (LoF, LoT) entry

145

9. CONTENTS LISTS

Table 9.1: Indents and Numwidths (in ems)

Entry Level Standard memoir class
indent numwidth indent numwidth
book -2 — — 0 —
part -1 0 — 0 15
chapter 0 0 1.5 0 1.5
section 1 1.5 2.3 1.5 2.3
subsection 2 3.8 3.2 3.8 3.2
subsubsection 3 7.0 4.1 7.0 4.1
paragraph 4 10.0 5.0 10.0 5.0
subparagraph 5 12.0 6.0 12.0 6.0
figure/table @) 1.5 2.3 0 1.5
subfigure/table 2) — — 1.5 2.3

flushleft in a box of width numwidth. If the number is too long for the box then it will pro-
trude into the title text. The title text is indented by (indent + numwidth) from the lefthand
margin. That is, the title text is typeset in a block of width

(\linewidth - indent - numwidth - \@tocrmarg).

Table 9.1 lists the standard values for the indent and numwidth. There is no explicit
numwidth for a part; instead a gap of lem is put between the number and the title text. Note
that for a sectioning command the values depend on whether or not the document class
provides the \chapter command; the listed values are for the book and report classes — in
the article class a \section is treated like a \chapter, and so on. Also, which somewhat
surprises me, the table and figure entries are all indented.

| \@dottedtocline{(level) }H (indent)}{ (numwidth)} \

Most of the \1@kind commands are defined in terms of the \@dottedtocline command.
This command takes three arguments: the (level) argument is the level as shown in Ta-
ble 9.1, and (indent) and (numuwidth) are the indent and numwidth as illustrated in Figure 9.2.
For example, one definition of the \1@section command is:

\newcommand*{\1@section}{\@dottedtocline{1}{1.5em}{2.3em}}

If it is necessary to change the default typesetting of the entries, then it is usually necessary
to change these definitions, but memoir gives you handles to easily alter things without
having to know the LaTeX internals.

You can use the \addcontentsline command to add \contentsline commands to
a file.

| \addtocontents{{file)}{(text)} \

LaTeX also provides the \addtocontents command that will insert (text) into (file). You
can use this for adding extra text and /or macros into the file, for processing when the file is
typeset by \tableofcontents (or whatever other command is used for (file) processing,
such as \listoftables for a lot file).

As\addcontentsline and \addtocontents write their arguments to a file, any frag-
ile commands used in their arguments must be \protected.

146

9.1. General ToC methods

You can make certain adjustments to the ToC, etc., layout by modifying some of the

above macros. Some examples are:

¢ If your page numbers stick out into the righthand margin
\renewcommand{\@pnumwidth}{3em}
\renewcommand{\@tocrmarg}{4em}
but using lengths appropriate to your document.
* To have the (sectional) titles in the ToC, etc., typeset ragged right with no hyphen-
ation
\renewcommand{\@tocrmarg}{2.55em plusifil}

where the value 2. 55em can be changed for whatever margin space you want.
¢ The dots in the leaders can be eliminated by increasing \@dotsep to a large value:
\renewcommand{\@dotsep}{10000}

¢ To have dotted leaders in your ToC and LoF but not in your LoT:

\tableofcontents

\makeatletter \renewcommand{\@dotsep}{10000} \makeatother
\listoftables

\makeatletter \renewcommand{\@dotsep}{4.5} \makeatother
\listoffigures

¢ To add a horizontal line across the whole width of the ToC below an entry for a Part:

\part{Part title}
\addtocontents{toc}{\protect\mbox{}\protect\hrulefill\par}

As said earlier any fragile commands in the arguments to \addtocontents and
\addcontentsline must be protected by preceding each fragile command with
\protect. The result of the example above would be the following two lines in
the . toc file (assuming that it is the second Part and is on page 34):

\contentsline {part}{II\hspace {lem}Part title}{34}{}
\mbox {}\hrulefill \par

If the \protects were not used, then the second line would instead be:

\unhbox \voidb@x \hbox {}\unhbox \voidb@x \leaders \hrule \hfill
\kern \z@ \par

which would cause LaTeX to stop and complain because of the commands that in-
cluded the @(see §E.4). If you are modifying any command that includes an @ sign
then this must be done in either a .sty file or if in the document itself it must be
surrounded by \makeatletter and \makeatother. For example, if you want to
modify \@dotsep in the preamble to your document you have to do it like this:

\makeatletter
\renewcommand{\@dotsep}{9.0}
\makeatother

147

9. CONTENTS LISTS

¢ To change the level of entries printed in the ToC (for example when normally sub-
sections are listed in the ToC but for appendices only the main title is required)

\appendix
\addtocontents{toc}{\protect\setcounter{tocdepth}{0}}
\chapter{First appendix}

9.2 THE cLASS TOC METHODS

The class provides various means of changing the look of the ToC, etc., without having to
go through some of the above.

\tableofcontents \tableofcontents*
\listoffigures \listoffigures*
\listoftables \listoftablesx*

The ToC, LoF, and LoT are printed at the point in the document where these commands
are called, as per normal LaTeX. You can use \tableofcontents, \1istoffigures, etc,,
more than once in a memoir class document.

However, there are two differences between the standard LaTeX behaviour and the
behaviour with this class. In the standard LaTeX classes that have \chapter headings, the
ToC, LoF and LoT each appear on a new page. With this class they do not necessarily start
new pages; if you want them to be on new pages you may have to specifically issue an
appropriate command beforehand. For example:

\clearpage
\tableofcontents
\clearpage
\listoftables

Also, the unstarred versions of the commands put their headings into the ToC, while the
starred versions do not.

| \begin{KeepFromToc} \listof... \end{KeepFromToc} \

There is at least one package that uses \tableofcontents for its own ‘List of... .
When used with the class this will put the package’s ‘List of...” title into the ToC, and
the package doesn’t seem to know about \tableofcontents*. The heading of any
\listof... command that is in the KeepFromToc environment will not be added to
the ToC. For example:

\begin{KeepFromToc}
\listoffigures
\end{KeepFromToc}

is equivalent to \1listoffiguresx*.

\onecoltocetc
\twocoltocetc
\doccoltocetc

148

Added February
2024

9.2. The class ToC methods

In the standard classes the ToC, etc., are set in one column even if the document as a
whole is set in two columns. This limitation is removed. Following the \onecoltocetc
declaration, which is the default, the ToC and friends will be set in one column but
after the \twocoltocetc declaration they will be set in two columns. Following the
\doccoltocetc declaration they will be set in either one or two columns to match the
document class onecolumn or twocolumn option.

\maxtocdepth{(secname)}
\settocdepth{(secname)} \settocdepth*{(secname)}

The class \maxtocdepth command sets the tocdepth counter. It is currently not used in
the memoir class.

The memoir class command \settocdepth is somewhat analagous to the
\setsecnumdepth command described in §6.3. It sets the value of the tocdepth counter
and puts it into the ToC to (temporarily) modify what will appear. The \settocdepth
and \maxtocdepth macros are from the tocvsec2 package [?].

Caveat. In a situation like this

\settocdepth{section}
\include{fileA}

The TOC data (section) may be writen after the data from fileA!
In such a case try using \settocdepth* instead. As it may insert a \clearpage,
this code is not the default.

When we want to manually add something to the table of contents and we are using hy-
perref we often do not have anything suitable for the hyperlink to. We therefore have to
manually help. Traditionally one would use

| \phantomsection \

As of 2022 we can also use one (see [?])

\MakeLinkTarget [(prefix)1{}
\MakeLinkTarget*{(target name)}

A typical example:

...some code...
\MakeLinkTarget [section] {}
\addcontentsline{toc}{section}{Dedication}

Here we directly specified that the prefix should be (section), which is exactly what
\phantomsection does. But now we can easily change this if this is, say, a chapter in-
stead. With macros like \section(*) and friends, hyperrer make sure the target is at the
right place above the title.

9.2.1 Changing the titles

Commands are provided for controlling the appearance of the ToC, LoF and LoT titles.

| \contentsname \listfigurename \listtablename \

149

9. CONTENTS LISTS

Table 9.2: Values for X in macros for styling the titles of ‘List of...’

toc lof 1lot

Following LaTeX custom, the title texts are the values of the \contentsname,
\listfigurename and \1listtablename commands.

Caveat. Most people use babel which then controls the actual text storred in, say
\contentsname. Any redefinition is the reset whenever a language is reset.
The proper method to change, say, a Danish \contentsname to FooBar would be

\setlocalecaption{danish}{contents}{FooBar}
Note how here the name part of the macro is ignored. = The old style of

using \addto\captionsdanish{\renewcommand...}, is also available, but the
\setlocalecaption method is preferred and easier to use.

The commands for controlling the typesetting of the ToC, LoF and LoT titles all follow
a similar pattern, so for convenience (certainly mine, and hopefully yours) in the follow-
ing descriptions I will use X, as listed in Table 9.2, to stand for the file extension for the
appropriate ‘List of...". That is, any of the following:

e tocor
e lof or

e lot.

For example, \Xmark stands for \tocmark or \lofmark or \lotmark.
The code for typesetting the ToC title looks like:

\tocheadstart
\printtoctitle{\contentsname}
\tocmark
\thispagestyle{chapter}
\aftertoctitle

where the macros are described below.
| \Xheadstart

This macro is called before the title is actually printed. Its default definition is

\newcommand{\Xheadstart}{\chapterheadstart}

[\printXtitle{(title)} \
The title is typeset via \printXtitle, which defaults to using \printchaptertitle for
the actual typesetting.

| \Xmark \

These macros sets the marks for use by the running heads on the ToC, LoF, and LoT pages.
The default definition is equivalent to:

\newcommand{\Xmark}{\markboth{\. . .name}{\...name}}

150

9.2. The class ToC methods

where \...name is \contentsname or \listfigurename or \listtablename as ap-
propriate. You probably don’t need to change these, and in any case they may well be
changed by the particular \pagestyle in use.

[\afterXtitle \

This macro is called after the title is typeset and by default it is defined to be
\afterchaptertitle.

Essentially, the ToC, LoF and LoT titles use the same format as the chapter titles, and
will be typeset according to the current chapterstyle. You can modify their appearance by
either using a different chapterstyle for them than for the actual chapters, or by changing
some of the macros. As examples:

¢ Doing

\renewcommand{\printXtitle}[1]{\hfill\Large\itshape #1}

will print the title right justified in a Large italic font.
¢ For a Large bold centered title you can do

\renewcommand{\printXtitle}[1]{\centering\Large\bfseries #1}

e Writing
\renewcommand{\afterXtitle}{/
\thispagestyle{empty}\afterchaptertitle}

will result in the first page of the listing using the empty pagestyle instead of the
default chapter pagestyle.

¢ Doing
\renewcommand{\afterXtitle}{%
\par\nobreak \mbox{}\hfill{\normalfont Pagel}\par\nobreak}

will put the word ‘Page’ flushright on the line following the title.

9.2.2 Typesetting the entries

Commands are also provided to enable finer control over the typesetting of the different
kinds of entries. The parameters defining the default layout of the entries are illustrated as
part of the layouts package [?] or in [?, p. 51], and are repeated in Figure 9.2.

Most of the commands in this section start as \cft. .., where cft is intended as a
mnemonic for Table of Contents, List of Figures, List of Tables.

[\cftdot \

In the default ToC typesetting only the more minor entries have dotted leader lines be-
tween the sectioning title and the page number. The class provides for general leaders
for all entries. The ‘dot’ in a leader is given by the value of \cftdot. Its default defini-
tion is \newcommand{\cftdot}{.} which gives the default dotted leader. By changing
\cftdot you can use symbols other than a period in the leader. For example

\renewcommand{\cftdot}{\ensuremath{\ast}}

will result in a dotted leader using asterisks as the symbol.

\cftdotsep
\cftnodots

151

9. CONTENTS LISTS

Each kind of entry can control the separation between the dots in its leader (see be-
low). For consistency though, all dotted leaders should use the same spacing. The macro
\cftdotsep specifies the default spacing. However, if the separation is too large then
no dots will be actually typeset. The macro \cftnodots is a separation value that is ‘too
large’.

\setpnumwidth{(length)}
\setrmarg{(length)}

The page numbers are typeset in a fixed width box. The command \setpnumwidth can
be used to change the width of the box (LaTeX ’s internal \@pnumwidth). The title texts
will end before reaching the righthand margin. \setrmarg can be used to set this distance
(LaTeX s internal \@tocrmarg). Note that the length used in \setrmarg should be greater
than the length set in \setpnumwidth. These values should remain constant in any given
document.

This manual requires more space for the page numbers than the default, so the follow-
ing was set in the preamble:

\setpnumwidth{2.55em}
\setrmarg{3.55em}

| \cftparskip \

Normally the \parskip in the ToC, etc., is zero. This may be changed by changing
the length \cftparskip. Note that the current value of \cftparskip is used for the
ToC, LoF and LoT, but you can change the value before calling \tableofcontents or
\listoffigures or \listoftables if one or other of these should have different values
(which is not a good idea).

Again for convenience, in the following I will use K to stand for the kind of entry, as
listed in Table 9.3; that is, any of the following:

* book for \book titles.

e part for \part titles

e chapter for \chapter titles

e section for \section titles

* subsection for \subsection titles

e subsubsection for \subsubsection titles
* paragraph for \paragraph titles

e subparagraph for \subparagraph titles
e figure for figure \caption titles

e subfigure for subfigure \caption titles
e table for table \caption titles

e subtable for subtable \caption titles
* ok ok
The toc macros for \book, \part and \chapter slightly differs from the other. Two ways,
firstly the spacing above the entry (see \cftbeforeXskip later on), is factored out into
the following macros

152

Added March 2025

Added March 2025

9.2. The class ToC methods

Table 9.3: Value of K in macros for styling entries in a ‘List of...’

K Kind of entry K Kind of entry
book \book title subparagraph \subparagraph title
part \part title figure figure caption
chapter \chapter title subfigure subfigure caption
section \section title table table caption
subsection \subsection title subtable subtable caption

subsubsection \subsubsection title

\cftbookbreak
\cftpartbreak
\cftchapterbreak

Besides adding the vertical space they also add a penalty to encourage LaTeX to do page
breaking before it rahter than after it. In pseudo code it can be though of as (Y being one
of book, part or chapter).

\newcommand\cftYbreakq{

add a penanalty
add \cftbeforeYskip as vertical space

The penalty part is not present in the other constructions.

Changed. Where the vertical spacing was already a part of \cftbookbreak and
\cftpartbreak, it was not the case for \cftchapterbreak. This discrepancy was
fixed in 2025. Please note that this will cause issues with existing documents if you
have modified \cftchapterbreak. Which was one of the reasons for factoring out the
penalties, see below.

As of March 2025, we have factored out the penalties used in the to entries for \book,

\part and \chapter. They all have a default value of -\@highpenalty, aka —301. Neg-
ative values will encourage breaking at this point. The macros can be changed using
\renewcommand.

\cftbeforebookpenalty
\cftbeforepartpenalty
\cftbeforechapterpenalty

Changed. There is an interesting inheritance from the standard book class. Both
\cftbeforebookskip and \cftbeforepartskip are applied using \addvspace
whereas \cftbeforechapterskip uses \vskip. Nobody really knows why the stan-
dard classes split it like this, but it has been like this for more than 35 years.

Why is this relevant? Because overall \addvspace would be a better choice. The
difference can be seen with these two documents

\documentclass{memoir}

153

9. CONTENTS LISTS

\setlength\cftbeforechapterskip{5em} ’ more noticeable
\begin{document}

\tableofcontents*

\chapter{Foo}

\end{document}

b

\documentclass{memoir}
\setlength\cftbeforepartskip{5em} J more noticeable
\begin{document}

\tableofcontents*

\part{Foo}

\end{document}

As we see \cftbeforechapterskip is always applied when it is the first element in
the ToC. But this is not the case for \part. The difference is down to \addvspace
vs. \vskip. For user convenience we have now made this difference configurable, see
below.

| \setcftvspacecmd{(macro)} ‘

This macro can set the vertical spacing command used by \chapter and the friends
that stem from \newlistentry. The default is \vskip, a better option would be to
use \addvspace. But as the comment above shows, changing the command to be
\addvspace by default, would change the first page of the ToC for thousands of exist-
ing documents. Thus we leave it to the user to manually reset the macro using

\setcftvspacecmd{\addvspace}

in your preamble.

Back to the macros that control the look of the entries:
[\cftbeforeKskip ‘

This length controls the vertical space before an entry. It can be changed by using
\setlength.

| \cftKindent \

This length controls the indentation of an entry from the left margin (indent in Figure 9.2).
It can be changed using \setlength.

| \cftKnumwidth \

This length controls the space allowed for typesetting title numbers (numwidth in Fig-
ure 9.2). It can be changed using \setlength. Second and subsequent lines of a multiline
title will be indented by this amount.

The remaining commands are related to the specifics of typesetting an entry. This is a
simplified pseudo-code version for the typesetting of numbered and unnumbered entries.

{\cftKfont {{\cftKname \cftKpresnum SNUM\cftKaftersnum\hfil} \cftKaftersnumb TITLE}}
{\cftKleader}{\cftKformatpnum{PAGE}}\cftKafterpnum\par

154

9.2. The class ToC methods

{\cftkfont TITLE}{\cftKleader}{\cftKformatpnum{PAGE}}\cftKafterpnum\par

where SNUM is the section number, TITLE is the title text and PAGE is the page number. In
the numbered entry the pseudo-code

{\cftKpresnum SNUM\cftKaftersnum\hfill}

is typeset within a box of width \cftKnumwidth, see the \...numberlinebox macros
later on.

[\cftKfont \

This controls the appearance of the title (and its preceding number, if any). It may be
changed using \renewcommand.

\cftKfont takes no arguments as such, but the the number and title is presented to
it as an argument. Thus one may end \cftKfont with a macro taking one argument, say
\MakeUppercase, and which then readjust the text as needed.

page 162 if you consider using upper/lower cased TOC entries and especially if you

Caveat. Please read the section entitled About upper or lower casing TOC entries on
are also using the hyperref package.

mands in order to get rid of some of the grouping described in the pseudo code above.

| Caveat. In some specialised designs it can be necessary to patch some \1@... com-
How to do this is not described in this manual.

| \cftKname \

The first element typeset in an entry is \cftKname.’ Its default definition is

\newcommand*{\cftKname}{}

so it does nothing. However, to put the word ‘Chapter” before each chapter number in a
ToC and ‘Fig.” before each figure number in a LoF do:

\renewcommand*{\cftchaptername}{Chapter\space}
\renewcommand*{\cftfigurename}{Fig. \space}

| \cftKpresnum \cftKaftersnum \cftKaftersnumb \

The section number is typeset within a box of width \cftKnumwidth. Within the box the
macro \cftKpresnum is first called, then the number is typeset, and the \cftKaftersnum
macro is called after the number is typeset. The last command within the box is \hfil
to make the box contents flushleft. After the box is typeset the \cftKaftersnumb
macro is called before typesetting the title text. All three of these can be changed by
\renewcommand. By default they are defined to do nothing.

\numberline{(num)}
\partnumberlineq{(num)}
\partnumberline{(num)}
\chapternumberlineq{(num)}

3Suggested by Danie Els.

155

9. CONTENTS LISTS

In the ToC, the macros \booknumberline, \partnumberline and \chapternumberline
are responsible respectively for typesetting the \book, \part and \chapter numbers,
whereas \numberline does the same for the sectional siblings. Internally they use
\cftKpresnum, \cftKaftersnum and \cftKaftersnumb as above. If you do not want,
say, the \chapter number to appear you can do:

\renewcommand{\chapternumberline} [1]{}

\numberlinehook{{num)?}
\cftwhatismyname
\booknumberlinehook{(num)}
\partnumberlinehook{(num)}
\chapternumberlinehook{(num)}
\numberlinebox{(length)}{(code)}
\booknumberlinebox{(length)}{(code)}
\partnumberlinebox{(length)}{{code)}
\chapternumberlinebox{(length)}{(code)}

Inside the four \...numberline macros, the first thing we do is to give the
\...numberline argument to a hook. By default this hook does nothing. But, with
the right tools,* they can be used to record the widths of the sectional number. Which
then can be used to automatically adjust the various (numwidth) and (indent) within
the \cftsetindents macro. In order to tell the section types apart (they all use
\numberline), the value of the \cftwhatismyname macro will locally reflect the current
type.

As mentioned earlier, the \book, \part and \chapter numbers are typeset inside a
box of certain fixed widths. Sometimes it can be handy not having this box around. For this
you can redefine one of the four \. . .numberlinebox macros listed above. For example
via

\renewcommand\chapternumberlinebox [2] {#2}

The first argument is the width of the box to be made. All four macros are defined similar
to this (where #1 is a length)

\newcommand\chapternumberlinebox [2]{%
\hb@xt@#1{#2\hfil}}

\cftKleader
\cftKdotsep

\cftKleader defines the leader between the title and the page number; it can be
changed by \renewcommand. The spacing between any dots in the leader is controlled
by \cftKdotsep (\@dotsep in Figure 9.2). It can be changed by \renewcommand and its
value must be either a number (e.g., 6.6 or \cftdotsep) or \cftnodots (to disable the
dots). The spacing is in terms of math units where there are 18mu to lem.

The default leaders macro is similar to

\newcommand{\cftsectionleader}{\normalfont\cftdotfill{\cftsectiondotsep}}

4Which we do not currently supply..., but have a look at Sniplet C.4 on page 413.

156

9.2. The class ToC methods

Note that the spacing of the dots is affected by the font size (as the math unit is affected by
the font size). Also note that the \cftchapterleader is bold by default.

\cftKformatpnum{ (pnum)}
\cftKformatpnumhook{(num)}
\cftKpagefont

The macro \cftKformatpnum typesets an entry’s page number, using the
\cftKpagefont.’ The default definition is essentially:

\newcommand*{\cftKformatpnum} [1]{%
\cftKformatpnumhook{#1}%
\hbox to \@pnumwidth{\hfil{\cftKpagefont #1}}}

which sets the number right justified in a box \@pnumwidth wide. To have, say, a \part
page number left justified in its box, do:

\renewcommand*{\cftpartformatpnum} [1]{%
\cftpartformatpnumhook{#13}%
\hbox to \@pnumwidth{{\cftpartpagefont #1}}}

The \cftKformatpnumhook does nothing by default (other than eating the argument),
but could be redefined to record the widest page number and report it back, even reusing
it to auto adjust on the next run to set \@pnumwidth (see \setpnumwidth).

| \cftKafterpnum \

This macro is called after the page number has been typeset. Its default is to do nothing. It
can be changed by \renewcommand.

| \cftsetindents{(kind)}{(indent) }{ (numwidth)} \

The command \cftsetindents sets the (kind) entries indent to the length (indent) and its
numwidth to the length (numwidth). The (kind) argument is the name of one of the standard
entries (e.g., subsection) or the name of entry that has been defined within the document.
For example

\cftsetindents{figure}{Oem}{1.5em}

will make figure entries left justified.
This manual requires more space for section numbers in the ToC than the default
(which allows for three digits). Consequently the preamble contains the following:

\cftsetindents{section}{1.5em}{3.0em}
\cftsetindents{subsection}{4.5em}{3.9em}
\cftsetindents{subsubsection}{8.4em}{4.8em}
\cftsetindents{paragraph}{10.7em}{5.7em}
\cftsetindents{subparagraph}{12.7em}{6.7em}

Note that changing the indents at one level implies that any lower level indents should be
changed as well.

Various effects can be achieved by changing the definitions of \cftKfont,
\cftKaftersnum, \cftKaftersnumb, \cftKleader and \cftKafterpnum, either

5This addition to the class was suggested by Dan Luecking, CTT Re: setting numbers in toc in their natural width
box, 2007/08/15.

157

9. CONTENTS LISTS

singly or in combination. For the sake of some examples, assume that we have the fol-
lowing initial definitions
\newcommand*{\cftKfont}{}
\newcommand*{\cftKaftersnum}{}
\newcommand*{\cftKaftersnumb}{}
\newcommand*{\cftKleader}{\cftdotfill{\cftKdotsep}}
\newcommand*{\cftKdotsep}{\cftdotsep}
\newcommand*{\cftKpagefont}{}
\newcommand*{\cftKafterpnum}{}

Note that the same font should be used for the title, leader and page number to provide a
coherent appearance.
* To eliminate the dots in the leader:

\renewcommand*{\cftKdotsep}{\cftnodots}

* To put something (e.g., a name) before the title (number):
\renewcommand*{\cftKname}{SOMETHING }

¢ To add a colon after the section number:

\renewcommand*{\cftKaftersnum}{:}

* To put something before the title number, add a double colon after the title number,
set everything in bold font, and start the title text on the following line:

\renewcommand*{\cftKfont}{\bfseries}
\renewcommand*{\cftKleader}{\bfseries\cftdotfill{\cftKdotsep}}
\renewcommand*{\cftKpagefont}{\bfseries}
\renewcommand*{\cftKname}{SOMETHING }
\renewcommand{\cftKaftersnum}{::}
\renewcommand{\cftKaftersnumb}{\\}

If you are adding text in the number box in addition to the number, then you will
probably have to increase the width of the box so that multiline titles have a neat
vertical alignment; changing box widths usually implies that the indents will require
modification as well. One possible method of adjusting the box width for the above
example is:

\newlength{\mylen} % a "scratch" length
\settowidth{\mylen}{\bfseries\cftKaftersnum}
\addtolength{\cftKnumwidth}{\mylen} % add the extra space

¢ To set the chapter number and title as just ‘NUM - TITLE’, i.e. un-boxed number
plus a symbolic separator, use

\renewcommand\cftchapteraftersnumb{\enspace\textperiodcentered\enspace}
\renewcommand\chapternumberlinebox [2] {#2}

- of couse, it works best, only if the TITLE is a single line.

* Make chapter titles lower case small caps

158

9.2. The class ToC methods

\renewcommand\cftchapterfont{\scshape\MakeLowercase}

—here we do not touch the case of any math.
¢ To set the section numbers flushright:

\setlength{\mylen}{0.5em} % extra space at end of number
\renewcommand{\cftKpresnum}{\hfill} ’ note the double ‘1’
\renewcommand{\cftKaftersnum}{\hspace*{\mylen}}
\addtolength{\cftKnumwidth}{\mylen}

In the above, the added initial \hfill in the box overrides the final \hfil in the
box, thus shifting everything to the right hand end of the box. The extra space is so
that the number is not typeset immediately at the left of the title text.

* To set the entry ragged left (but this only looks good for single line titles):

\renewcommand{\cftKfont}{\hfill\bfseries}
\renewcommand{\cftKleader}{}

¢ To set the titles ragged right instead of the usual flushright. Assuming that there are
more than 100 pages in the document (otherwise adjust the length):

\setrmarg{3.55em plus 1fil}

where the last four characters before the closing brace are: digit 1, lowercase F, low-
ercase I, and lowercase L.

¢ To set the page number immediately after the entry text instead of at the righthand
margin:

\renewcommand{\cftKleader}{}
\renewcommand{\cftKafterpnum}{\cftparfillskip}

| \cftparfillskip \

By default the \parfillskip value is locally set to fill up the last line of a paragraph. Just
changing \cftKleader as in the above example puts horrible interword spaces into the
last line of the title. The \cftparfillskip command is provided just so that the above
effect can be achieved.

\cftpagenumbersoff{(kind)}
\cftpagenumberson{ (kind)}

The command \cftpagenumbersoff will eliminate the page numbers for (kind) entries
in the listing, where (kind) is the name of one of the standard kinds of entries (e.g.,
subsection, or figure) or the name of a new entry defined in the document.

The command \cftpagenumberson reverses the effect of a corresponding
\cftpagenumbersoff for (kind).

For example, to eliminate page numbers for appendices in the ToC:

\appendix
\addtocontents{toc}{\cftpagenumbersoff{chapter}}
\chapter{First appendix}

159

9. CONTENTS LISTS

If there are other chapter type headings to go into the ToC after the appendices (perhaps a
bibliography or an index), then it will be necessary to do a similar

\addtocontents{toc}{\cftpagenumberson{chapter}}

after the appendices to restore the page numbering in the ToC.

Sometimes it may be desirable to make a change to the global parameters for an indi-
vidual entry. For example, a figure might be placed on the end paper of a book (the inside
of the front or back cover), and this needs to be placed in a LoF with the page number set
as, say, ‘inside front cover’. If ‘inside front cover’ is typeset as an ordinary page number it
will stick out into the margin. Therefore, the parameters for this particular entry need to
be changed.

| \cftlocalchange{(ext)H (pnumwidth)}{{tocrmarg)} |

The command \cftlocalchange will write an entry into the file with extension (ext) to
reset the global \@pnumwidth and \@tocrmarg parameter lengths. The command should
be called again after any special entry to reset the parameters back to their usual values.
Any fragile commands used in the arguments must be protected.

\cftaddtitlelineq{(ext)}{(kind)}{(title) }{(page)}
\cftaddnumtitleline{(ext)}{ (kind)}{(num)}{(title)}{ (page)}

The command \cftaddtitleline will write a \contentsline entry into (ext) for a
(kind) entry with title (title) and page number (page). Any fragile commands used in the
arguments must be protected. That is, an entry is made of the form:

\contentsline{kind}{title}{page}{}

The command \cftaddnumtitleline is similar to \cftaddtitleline except that it
also includes (num) as the argument to \numberline. That is, an entry is made of the
form

\contentsline{kind}{\numberline{num}title}{page}{}

As an example of the use of these commands, noting that the default LaTeX values
for \@pnumwidth and \@tocrmarg are 1.55em and 2.55em respectively, one might do the
following for a figure on the frontispiece page.

this is the frontispiece page with no number

draw or import the picture (with no \caption)

\cftlocalchange{lof}{4em}{5em} % make pnumwidth big enough for
% frontispiece and change margin

\cftaddtitleline{lof}{figure}{The title}{frontispiece}

\cftlocalchange{lof}{1.55em}{2.55em} % return to normal settings

\clearpage

Recall that a \caption command will put an entry in the 1lof file, which is not wanted
here. If a caption is required, then you can either craft one youself or, assuming that your
general captions are not too exotic, use the \1egend command (see later). If the illustration
is numbered, use \cftaddnumtitleline instead of \cftaddtitleline.

160

9.2. The class ToC methods

Inserting stuff into the content lists

The next functions were suggested by Lars Madsen who found them useful if, for example,
you had two versions of the ToC and you needed some aspects to be formatted differently.

\cftinsertcoded{(name)}{(code)}
\cftinserthook{(file) }{ (name)} \cftinserthookx{(file)}{(name)>

The \cftinserthook is somewhat like \addtocontents in that it enables you to insert a
code hook into the ToC, etc., where (file) is the (toc, 1of, ...) file and (name) is the ‘name’
of the hook. The (code) for the hook is specified via \cftinsertcode where (name) is the
name you give to the hook. These can be used to make alterations to a ‘List of...” on the
fly.

AddedFebruary | Caveat. If \cftinserthook is placed between \include’s, one may experience a
2024 timing issue, such that, say,

\cftinserthook{toc}{preB}
\include{fileB}

inserts preB after the data from fileB!, making it rather unusable.

In that case use try \cftinserthook*. Given that \cftinserthook* may issue a
\clearpage, which might be undesirable in documents without \include, the starred
version is not the default default.

For example:

\cftinsertcode{A}{%
\renewcommand*{\cftchapterfont}{\normalfont\scshape}
... } code for ToC

\frontmatter

\tableofcontents
\cftinsertcode{G}{...}/ code for LoF
\cftinsertcode{F}{...}/ code for LoF
\listoffigures

\cftinserthook{lof}{G}
\chapter{...}

\mainmatter
\cftinserthook{toc}{A}
\cftinserthook{lof}{F}
\chapter{...}

If you do not use \cftinsertcode before calling the command to type the ‘List of...’
that it is intended for then nothing will happen. No harm will come if a matching
\cftinserthook is never used. No harm occurs either if you call \cftinserthook and
there is no prior matching \cftinsertcode.

161

9. CONTENTS LISTS

One use of these ToC hooks is reusing the ToC data to, say, create chapter ToC’s. The
code for this is shown in Sniplet C.5 on page 414. In the sniplet we use the follow-
ing two hooks that are executed right before and right after \chapter, \part, \book,
\appendixpage writes to the ToC. By default they do nothing.°

\mempreaddchaptertotochook
\mempostaddchaptertotochook
\mempreaddparttotochook
\mempostaddparttotochook
\mempreaddbooktotochook
\mempostaddbooktotochook
\mempreaddapppagetotochook
\mempostaddapppagetotochook

Extra chapter material in the ToC

| \precistoctext{(text)} \precistocfont \precistocformat \

The \chapterprecistoc macro puts \precistoctext{(text)} into the toc file. Further
information as to the definition of this macro can be found in §6.5.3.

9.2.3 About upper or lower casing TOC entries
This is a simple as using one of

\renewcommand\cftKfont{. . .\MakeUppercase}
\renewcommand\cftKfont{...\MakeLowercase}

With earlier kernels, the code above would not work with hyperref and you’d need to use
the method described below. Using a modern kernel, this is no longer an issue and the
method described below is no longer needed, and will be removed a later version of the
class.

Changed. The use of \settocpreprocessor, see below, is no longer needed and not
recommended.

Some designs call for upper (or lower casing) TOC entries. This used to be a problem
when hyperref was used as it would complain about \MakeUppercase etc. With hyperref
the possibilities were limited. Explanation: The upper/lower casing macros were not that
robust, and need the content to be simple.” When hyperref was used, the hyperlink is
wrapped around the entry before \cftKfont gains access to it, and it was thus generally
too complicated for, say, \MakeUppercase to handle. The following workaround drew
inspiration from http://tex.stackexchange.com/q/11892/3929.

| \settocpreprocessor{(type)}{{code)} ‘

Here (type) is one of chapter, part or book.® And (code) can be something like this
example:

6More hooks may be added in later releases.

7For some definition of simple.

81f needed we will attempt to add a similar feature to the rest of the sectional types, please write the main-
tainer.

162

Added August
2025

http://tex.stackexchange.com/q/11892/3929

9.2. The class ToC methods

\makeatletter
\settocpreprocessor{chapter}{%
\let\tempf@rtoc\f@rtocY
\def\f@rtoc{%
\texorpdfstring{\MakeUppercase{\tempf@rtoc}}{\tempf@rtoc}}’
}
\makeatother

Where \f@rtoc is a placeholder inside \chapter, \part and \book, holding the material
to be written to the actual TOC file before hyperref accesses it. This way the upper casing
is sneaked into the TOC file, and the bookmark part of hyperref will not complain about
the \MakeUppercase in the data. Of course, you will not have upper cased titles in the
bookmark list.

But as mentioned above, the kernel \MakeUppercase and \MakeLowercase work
works fine with hyperref.

9.2.4 Example: No section number

There are at least two ways of listing section titles in the ToC without displaying their
numbers and both involve the \numberline command which typesets the number in a
box.

The first method redefines \numberline so it throws away the argument. We do
this by modifying the \cftKfont macro which is called before \numberline and the
\cftKafterpnum which is called after the page number has been typeset.

\let\oldcftsf\cftsectionfont) save definition of \cftsectionfont
\let\oldcftspn\cftsectionafterpnumj, and of \cftsectionafterpnum
\renewcommand*{\cftsectionfont}{/

\let\oldnl\numberliney save definition of \numberline

\renewcommand*{\numberline}[1]{}/, change it

\oldcftsf} % use original \cftsectionfont
\renewcommand*{\cftsectionafterpnum}{%

\let\numberline\oldnl, % restore orginal \numberline

\oldcftspn} % use original \cftsectionafterpnum

Probing a little deeper, the \numberline macro is called to typeset section numbers
and is defined as:

\renewcommand*{\numberline} [1]{%
\hb@xt@\@tempdima{\@cftbsnum #1\@cftasnum\hfil}\@cftasnumb}

Each kind of heading \lets the \@cftbsnum macro to \cftKpresnum, and
the \@cftasnum macro to \cftKaftersnum, and the \@cftasnumb macro to
\cftKaftersnumb as appropriate for the heading. The second method for killing the
number uses a TeX method for defining a macro with a delimited argument.

\def\cftsectionpresnum #1\@cftasnum{}

The interpretation of this is left as an exercise for anyone who might be interested.

9.2.5 Example: Multicolumn entries

If the subsection entries, say, in the ToC are going to be very short it might be worth setting
them in multiple columns. Here is one way of doing that which depends on using the

163

9. CONTENTS LISTS

multicol package [?]. This assumes that subsections will be the lowest heading in the ToC.

\newcounter{toccols}

\setcounter{toccols}{3}

\newenvironment{mysection}[1]{%
\section{#1}%
\addtocontents{toc}{\protect\begin{multicols}{\value{toccols}}}}/
{\addtocontents{toc}{\protect\end{multocols}}}

The counter toccols controls the number of columns to be used. For each sec-
tion where you want subsections to be typeset in multiple columns in the ToC, use the
mysection environment instead of \section, like:

\begin{mysection}{Columns}
\subsection{Fat}
\subsection{Thin}

\end{mysection}

Any ToC entries generated from within the environment will be enclosed in a
multicols environment in the ToC. The \protects have to be used because environ-
ment \begin and \end commands are fragile.

9.2.6 Example: Multiple contents

It is easy to have two ToCs, one short and one long, when they are of the same style, like
this:

\renewcommand*{\contentsname}{Short contents}
\setcounter{tocdepth}{0}), chapters and above
\tableofcontents

% \clearpage
\renewcommand*{\contentsname}{Contents}
\setcounter{tocdepth}{2}), subsections and above
\tableofcontents

(Note that you can’t use \settocdepth in this case as that writes the change into the ToC,
so that the second use would override the first.)

This book has both a short and a long ToC, neither of which look like those typically
associated with LaTeX. This is how they were done.

The general style for the ToC, etc., is specified in the memsty package file.

%h% need more space for ToC page numbers
\setpnumwidth{2.55em}

\setrmarg{3.55em}

%%% need more space for ToC section numbers
\cftsetindents{section}{1.5em}{3.0em}
\cftsetindents{subsection}{4.5em}{3.9em}

164

9.2. The class ToC methods

\cftsetindents{subsubsection}{8.4em}{4.8em}
\cftsetindents{paragraph}{10.7em}{5.7em}
\cftsetindents{subparagraph}{12.7em}{6.7em}

%%’ need more space for LoF & LoT numbers
\cftsetindents{figure}{Oem}{3.0em}
\cftsetindents{table}{Oem}{3.0em}

%kt remove the dotted leaders
\renewcommand{\cftsectiondotsep}{\cftnodots}
\renewcommand{\cftsubsectiondotsep}{\cftnodots}
\renewcommand{\cftsubsubsectiondotsep}{\cftnodots}
\renewcommand{\cftparagraphdotsep}{\cftnodots}
\renewcommand{\cftsubparagraphdotsep}{\cftnodots}
\renewcommand{\cftfiguredotsep}{\cftnodots}
\renewcommand{\cfttabledotsep}{\cftnodots}

Three macros are defined to control the appearance of the short and the long ToC. First,
the macro \setupshorttoc for the short version. The first few lines ensure that only
chapter or part titles will be set, and any chapter precis text or tocdepth changes will be
ignored. The rest of the code specifies how the chapter titles are to be typeset, and finally
the part and book titles.

\newcommand*{\setupshorttoc}{/,
\renewcommand*{\contentsname}{Short contents}
\let\oldchangetocdepth\changetocdepth
\renewcommand*{\changetocdepth} [1]{}
\let\oldprecistoctext\precistoctext
\renewcommand{\precistoctext}[1]{}
\let\oldcftchapterfillnum\cftchapterfillnum
\setcounter{tocdepth}{0}/, chapters and above
\renewcommand*{\cftchapterfont}{\hfill\sffamily}
\renewcommand*{\cftchapterleader}{ \textperiodcentered\space}
\renewcommand*{\cftchapterafterpnum}{\cftparfillskip}

%% \setpnumwidth{Oem}

%% \setpnumwidth{1.5em}
\renewcommand*{\cftchapterfillnum}[1]{%

{\cftchapterleader}\nobreak

\hbox to 1.5em{\cftchapterpagefont ##1\hfil}\cftchapterafterpnum\par}
\setrmarg{0.3\textwidth}
\setlength{\unitlength}{\@tocrmarg}
\addtolength{\unitlength}{1.5em}
\let\oldcftpartformatpnum\cftpartformatpnum
\renewcommand*{\cftpartformatpnum}[1]{/

\hbox to\unitlength{{\cftpartpagefont ##1}}}}
\let\oldcftbookformatpnum\cftbookformatpnum
\renewcommand*{\cftbookformatpnum} [1]{%

\hbox to\unitlength{{\cftbookpagefont ##1}}}}

You can do many things using the \cft. .. macros to change the appearance of a ToC
but they can’t be entirely coerced into specifying the paragraphing of the \subsection

165

9. CONTENTS LISTS

titles. The \setupparasubsecs also went in the preamble.

\newcommand*{\setupparasubsecs}{%
\let\oldnumberline\numberline
\renewcommand*{\cftsubsectionfont}{\itshape}
\renewcommand*{\cftsubsectionpagefont}{\itshape}
\renewcommand{\1@subsection} [2]{%
\def\numberline####1{\textit{####1}~}%
\leftskip=\cftsubsectionindent
\rightskip=\@tocrmarg
%% \advance\rightskip Opt plus \hsize 7 uncomment this for raggedright
%% \advance\rightskip Opt plus 2em % uncomment this for semi-raggedright
\parfillskip=\fill
\ifhmode ,\ \else\noindent\fi
\ignorespaces
{\cftsubsectionfont ##1}~{\cftsubsectionpagefont##2}/
\let\numberline\oldnumberline\ignorespaces}
}
\AtEndDocument{\addtocontents{toc}{\par}

The above code changes the appearance of subsection titles in the ToC, setting each group
as a single paragraph (each is normally set with a paragraph to itself). By uncommenting
or commenting the noted lines in the code you can change the layout a little.

Caveat. We have an interesting caveat regarding \setupparasubsecs if you are using
hyperref and you have subsubsections, that are not shown in the ToC. You may see some
inline subsection entries showing up as “... text 15,...”, that is a strange space appears
before the comma.

This is an artifact due to the way hyperref wraps itself around the ToC entries, even
the ones that are not typeset, and thus an end of line space survives. We fix it using
\endlinechar:

\begingroup
\endlinechar=-1
\tableofcontents
\endgroup

Note again that it only happen if you have subsubsections with an inline subsection
entry list, and you are using hyperref.

Normally, section titles (and below) are set as individual paragraphs. Effectively the
first thing that is done is to end any previous paragraph, and also the last thing is to end the
current paragraph. Notice that the main code above neither starts nor finishes a paragraph.
If the group of subsections is followed by a section title, that supplies the paragraph end.
The last line above ensures that the last entry in the toc file is \par as this might be needed
to finish off a group of subsections if these are the last entries.

And thirdly for the main ToC, the macro \setupmaintoc reverts everything back to
normal.

\newcommand*{\setupmaintoc}{’%

166

9.3. New ‘List of...” and entries

\renewcommand{\contentsname}{Contents}
\let\changetocdepth\oldchangetocdepth
\let\precistoctext\oldprecistoctext
\let\cftchapterfillnum\oldcftchapterfillnum
\addtodef{\cftchapterbreak}{\par}{}
\renewcommand*{\cftchapterfont}{\normalfont\sffamily}
\renewcommand*{\cftchapterleader}{’
\sffamily\cftdotfill{\cftchapterdotsepl}}
\renewcommand*{\cftchapterafterpnum}{}
\renewcommand{\cftchapterbreak}{\par\addpenalty{-\Ghighpenalty}}
\setpnumwidth{2.55em}
\setrmarg{3.55em}
\setcounter{tocdepth}{2}
\let\cftpartformatpnum\oldcftpartformatpnum
\addtodef{\cftpartbreak}{\par+{}
\let\cftbookformatpnum\oldcftbookformatpnum
\addtodef{\cftbookbreak}{\par}+{}
}

The first few lines restore some macros to their original definitions.
\addtodef{\cftchapterbreak}{\par}{}

ensures that a chapter entry starts off with a \par; this is needed when the previous entry
is a group of subsections and their paragraph has to be ended. The remaining code lines
simply set the appearance of the chapter titles and restore that for parts and books, as well
as ensuring that they start off new paragraphs.

In the document itself, \tableofcontents was called twice, after the appropriate se-
tups:

\setupshorttoc
\tableofcontents

\clearpage

\setupparasubsecs
\setupmaintoc
\tableofcontents
\setlength{\unitlength}{1pt}

After all this note that I ensured that \unitlength was set to its default value (it had been
used as a scratch length in the code for \setupparasubsecs).

9.3 NEW ‘LIST OF...” AND ENTRIES

| \newlistof{(listofcom)}{{ext)H (listofname)} \

7

The command \newlistof creates a new ‘List of...’, and assorted commands to go
along with it. The first argument, (listofcom) is used to define a new command called
\listofcom which can then be used like \1istoffigures to typeset the ‘List of...". The
(exty argument is the file extension to be used for the new listing. The last argument,

167

9. CONTENTS LISTS

(listofname) is the title for the ‘List of...’. Unstarred and starred versions of \1istofcom
are created. The unstarred version, \1istofcom, will add (listofname) to the ToC, while
the starred version, \1istofcom#*, makes no entry in the ToC.

As an example:

\newcommand{\listanswername}{List of Answers}
\newlistof{listofanswers}{ans}{\listanswername}

will create a new \listofanswers command that can be used to typeset a listing of an-
swers under the title \1istanswername, where the answer titles are in an ans file. It
is up to the author of the document to specify the ‘answer’ code for the answers in the
document. For example:

\newcounter{answer} [chapter]

\renewcommand{\theanswer}{\arabic{answer}}

\newcommand{\answer} [1]{
\refstepcounter{answer}
\par\noindent\textbf{Answer \theanswer. #1}
\addcontentsline{ans}{answer}{\protect\numberline{\theanswer}#1}\par}

which, when used like:
\answer{Hard} The \ldots

will print as:

Answer 1. Hard
The ...

As mentioned above, the \newlistof command creates several new commands in ad-
dition to \1istofcom, most of which you should now be familiar with. For convenience,
assume that \newlistof{...}{X}{...} has been issued so that X is the new file exten-
sion and corresponds to the X in §9.2.1. Then in addition to \1istofcom the following
new commands will be made available.

The four commands, \Xmark, \Xheadstart, \printXtitle, and \afterXtitle, are
analagous to the commands of the same names described in §9.2.1 (internally the class uses
the \newlistof macro to define the ToC, LoF and LoT). In particular the default definition
of \Xmark is equivalent to:

\newcommand{\Xmark}{\markboth{listofname}{listofname}}

However, this may well be altered by the particular \pagestyle in use.
| Xdepth \
The counter Xdepth is analagous to the standard tocdepth counter, in that it specifies

that entries in the new listing should not be typeset if their numbering level is greater than
Xdepth. The default definition is equivalent to

\setcounter{Xdepth}{1}

\insertchapterspace
\addtodef{(macro) } (prepend)}{{append)}

Remember that the \chapter command uses \insertchapterspace to insert vertical
spaces into the LoF and LoT. If you want similar spaces added to your new listing then you

168

9.3. New ‘List of...” and entries

have to modify \insertchapterspace. The easiest way to do this is via the \addtodef
macro, like:

\addtodef{\insertchapterspace}{}%
{\addtocontents{ans}{\protect\addvspace{10pt}}}

The \addtodef macro is described later in §18.10.
The other part of creating a new ‘List of...’, is to specify the formatting of the entries,
i.e., define an appropriate \1@kind macro.

\newlistentry [(within)] {{cntr) }{{ext) }{(level-1)} \

The command \newlistentry creates the commands necessary for typesetting an en-
try in a ‘List of...”. The first required argument, (cntr) is used to define a new counter
called cntr, unless cntr is already defined. The optional (within) argument can be used
so that cntr gets reset to one every time the counter called within is changed. That
is, the first two arguments when cntr is not already defined, are equivalent to calling
\newcounter{(cntr)} [(within)]. If cntr is already defined, \newcounter is not called.
cntr is used for the number that goes along with the title of the entry.

The second required argument, (ext), is the file extension for the entry listing. The last
argument, (level-1), is a number specifying the numbering level minus one, of the entry in
a listing.

Calling \newlistentry creates several new commands used to configure the entry.
So in order to configure the list look of our previous answer example we would add

\newlistentry{answer}{ans}{0}

Assuming that \newlistentry is called as \newlistentry[within] {K}{X}{N},
where K and X are similar to the previous uses of them (e.g., K is the kind of entry X is
the file extension), and N is an integer number, then the following commands are made
available.

The set of commands \cftbeforeKskip, \cftKfont, \cftKpresnum,
\cftKaftersnum, \cftKaftersnumb, \cftKleader, \cftKdotsep, \cftKpagefont,
and \cftKafterpnum, are analagous to the commands of the same names described in
§9.2.2. Their default values are also as described earlier.

The default values of \cftKindent and \cftKnumwidth are set according to the value
of the (level-1) argument (i.e., N in this example). For N=0 the settings correspond to those
for figures and tables, as listed in Table 9.1 for the memoir class. For N=1 the settings
correspond to subfigures, and so on. For values of N less than zero or greater than four, or
for non-default values, use the \cftsetindents command to set the values.

\1@K is an internal command that typesets an entry in the list, and is defined in terms
of the above \cft*K* commands. It will not typeset an entry if Xdepth is N or less, where
X is the listing’s file extension.

The command \theK prints the value of the K counter. It is initially defined so that it
prints arabic numerals. If the optional (within) argument is used, \theK is defined as

\renewcommand{\theK}{\thewithin.\arabic{K}}

otherwise as
\renewcommand{\theK}{\arabic{K}}

169

9. CONTENTS LISTS

As an example of the independent use of \newlistentry, the following will set up
for sub-answers.

\newlistentry[answer]{subanswer}{ans}{1}
\renewcommand{\thesubanswer}{\theanswer.\alph{subanswer}}
\newcommand{\subanswer} [1]{

\refstepcounter{subanswer}

\par\textbf{\thesubanswer) #1}

\addcontentsline{ans}{subanswer}{\protect\numberline{\thesubanswer}#1}
\setcounter{ansdepth}{2}

And then:

\answer{Harder} The \ldots
\subanswer{Reformulate the problem} It assists \ldots

will be typeset as:

Answer 2. Harder
The....
2.a) Reformulate the problem It assists ...

By default the answer entries will appear in the List of Answers listing (typeset
by the \listofanswers command). In order to get the subanswers to appear, the
\setcounter{ansdepth}{2} command was used above.

To turn off page numbering for the subanswers, do

\cftpagenumbersoff{subanswer}

As another example of \newlistentry, suppose that an extra sectioning division be-
low subparagraph is required, called subsubpara. The \subsubpara command itself
can be defined via the LaTeX kernel \@startsection command. Also it is necessary
to define a \subsubparamark macro, a new subsubpara counter, a \thesubsubpara
macro and a \1@subsubpara macro. Using \newlistentry takes care of most of these
as shown below; remember the caveats about commands with @ signs in them (see §E.4).

\newcommand{\subsubpara}{\@startsection{subpara}

{6} YA level
{\parindent} % indent from left margin
{3.25ex \@pluslex \@minus .2ex} % skip above heading

{-1em} run-in heading with 7 lem between title & text

{\normalfont\normalsize\itshape} % italic number and title
}
\newlistentry[subparagraph] {subsubpara}{toc}{5}
\cftsetindents{subsubpara}{14.0em}{7.0em}
\newcommand*{\subsubparamark}[1]{} % gobble heading mark

Each ‘List of...” uses a file to store the list entries, and these files must remain open
for writing throughout the document processing. TeX has only a limited number of files
that it can keep open, and this puts a limit on the number of listings that can be used.
For a document that includes a ToC but no other extra ancilliary files (e.g., no index or
bibliography output files) the maximum number of LoX’s, including a LoF and LoT, is no

170

9.3. New ‘List of...” and entries

more than about eleven. If you try and create too many new listings LaTeX will respond
with the error message:

No room for a new write
If you get such a message the only recourse is to redesign your document.

9.3.1 Example: plates

As has been mentioned earlier, some illustrations may be tipped in to a book. Often, these
are called plates if they are on glossy paper and the rest of the book is on ordinary paper.
We can define a new kind of Listing for these.

\newcommand{\listplatename}{Plates}
\newlistof{listofplates}{lop}{\listplatename}
\newlistentry{plate}{lop}{0}
\cftpagenumbersoff{plate}

This code defines the \1istofplates command to start the listing which will be titled
‘Plates’ from the \1istplatename macro. The entry name is plate and the file extension
is lop. As plate pages typically do not have printed folios, the \cftpagenumbersoff
command has been used to prohibit page number printing in the listing.

If pages are tipped in, then they are put between a verso and a recto page. The af-
terpage package [?] lets you specify something that should happen after the current page
is finished. The next piece of code uses the package and its \afterpage macro to de-
fine two macros which let you specify something that is to be done after the next verso
(\afternextverso) or recto (\afternextrecto) page has been completed.

\newcommand{\afternextverso}[1]{%
\afterpage{\ifodd\c@page #1\else\afterpage{#1}\fi}}

\newcommand{\afternextrecto} [1]1{/
\afterpage{\ifodd\c@page\afterpage{#1}\else #1\fi}}

The \pageref{(labelid)} command typesets the page number corresponding to the
location in the document where \label{(labelid)} is specified. The following code
defines two macros’ that print the page number before (\priorpageref) or after
(\nextpageref) that given by \pageref.

\newcounter{mempref}

\newcommand{\priorpageref} [1]1{%
\setcounter{mempref}{\pageref{#1}}\addtocounter{mempref}{-1}\themempref}

\newcommand{\nextpageref}[1]{%
\setcounter{mempref}{\pageref{#1}}\addtocounter{mempref}{1}\themempref}

With these preliminaries out of the way, we can use code like the following for handling
a set of physically tipped in plates.

\afternextverso{\label{tip}
\addtocontents{lop}{%
Between pages \priorpageref{tip} and \pageref{tip}
\par\vspace*{\baselineskip}}

These only work for arabic page numbers.

171

9. CONTENTS LISTS

\addcontentsline{lop}{plate}{First plate}
\addcontentsline{lop}{plate}{Second plate}

\addcontentsline{lop}{plate}{Nth plate}
}

This starts off by waiting until the next recto page is started, which will be the page imme-
diately after the plates, and then inserts the label tip. The \addtocontents macro puts
its argument into the plate list 1op file, indicating the page numbers before and after the
set of plates. With the plates being physically added to the document it is not possible to
use \caption, instead the \addcontentsline macros are used to add the plate titles to
the lop file.

With a few modifications the code above can also form the basis for listing plates that
are electronically tipped in but do not have printed folios or \captions.

9.4 CHAPTER PRECIS

See §6.5.3 on page 90.

9.5 CONTENTS LISTS AND BOOKMARKS

With the hyperref package, the table of contents is often added as a list of bookmarks
thus providing a nice navigation for the user. There is one slight problem though: when
using, say, parts in the document, all chapters in that part ends up as a child of this part
bookmark—including the index and bibliography. A simple fix to this is to add

\makeatletter
\renewcommand*{\toclevel@chapter}{-1}
\makeatother

just before the material you would like to pull out of the part tree.
A better solution is the bookmark package, add it to the preamble, and add

\bookmarksetup{startatroot}

before the stuff you want to have moved out of, say, a part.

172

Ten

Floats and captions

A float environment is a particular kind of box — one that LaTeX decides where it should
go although you can provide hints as to where it should be placed; all other boxes are put
at the point where they are defined. Within reason you can put what you like within a float
but it is unreasonable, for example, to put a float inside another float. The standard classes
provide two kinds of float environments, namely figure and table. The only difference
between these is the naming and numbering of any caption within the environments —
a \caption in a figure environment uses \figurename while a \caption in a table
environment uses \tablename. Figures and tables are numbered sequentially but the two
numbering schemes are independent of each other.

The class provides means of defining new kinds of floats. It also provides additional
forms of captions for use both within and outside float environments together with handles
for changing the style of captions.

10.1 NEW FLOAT ENVIRONMENTS

It is often forgotten that the LaTeX float environments come in both starred and unstarred
forms. The unstarred form typesets the float contents in one column, which is the most
usual form for a book. The starred form typesets the contents of the float across the top of
both columns in a twocolumn document. In a onecolumn document there is no difference
between the starred and unstarred forms.

| \newfloat [(within)] {{fenv)}{ (ext)}{(capname)} \

The \newfloat command creates two new floating environments called (fenv) and (fenv*).
If there is not already a counter defined for (fenv) a new one will be created to be restarted
by the counter (within), if that is specified. A caption within the environment will be
written out to a file with extension (ext). The caption, if present, will start with (capname).
For example, the figure float for the class is defined as:

\newfloat [chapter] {figure}{lof}{\figurename}
\renewcommand{\thefigure}{J,
\ifnum\c@chapter>\z@ \thechapter.\fi \Q@arabic\c@figure}

The last bit of the definition is internal code to make sure that if a figure is in the document
before chapter numbering starts, then the figure number will not be preceeded by a non-
existent chapter number.

The captioning style for floats defined with \newfloat is the same as for the figures
and tables.

173

10. FLOATS AND CAPTIONS

The \newfloat command generates several new commands, some of which are inter-
nal LaTeX commands. For convenience, assume that the command was called as

\newfloat{F}{X}{capname}

so F is the name of the float environment and also the name of the counter for the caption,
and X is the file extension. The following float environment and related commands are
then created.

\begin{F} float material \end{F}
\begin{Fx*} float material \end{F*}

The new float environment is called F, and can be used as either \begin{F} or
\begin{Fx*}, with the matching \end{F} or \end{Fx*}. It is given the standard default
position specification of [tbp].

| Xdepth ‘
The Xdepth counter is analogous to the standard tocdepth counter in that it specifies that

entries in a listing should not be typeset if their numbering level is greater than Xdepth.
The default definition is

\setcounter{Xdepth}{1}

To have a subfloat of X appear in the listing do
\setcounter{Xdepth}{2}

As an example, suppose you wanted both figures (which come with the class), and
diagrams. You could then do something like the following.

\newcommand{\diagramname}{Diagram}
\newcommand{\listdiagramname}{List of Diagrams}
\newlistof{listofdiagrams}{dgm}{\listdiagramname}
\newfloat{diagram}{dgm}{\diagramname}
\newlistentry{diagram}{dgm}{0}

\begin{document}

\listoffigures

\listfofdiagrams

\begin{diagram}

\caption{A diagram} \label{diagl}

\end{diagram}
As diagram~\ref{diagl} shows ...

| \setfloatadjustment{{floatname)}{(code)} \

Often it is useful to add some global configuration to a given type of float such that one
will not have to add this to each and every float. For example to have all (floating) figures
and tables automatically centered plus have all (floating) tables typeset in \small use

\setfloatadjustment{figure}{\centering}
\setfloatadjustment{table}{\small\centering}

174

10.2. Setting off a float

10.1.1 Margin floats

We also provide two environments to insert an image or table into the margin (using
\marginpar). The construction is inspired by the Tufte I<TgX collection.

\begin{marginfigure} [(len)] float material \end{marginfigure}
\begin{margintable} [{len)] float material \end{margintable}

Because this is inserted differently than the ordinary figure or table floats, one might
get into the situation where a figure float inserted before a margin float, might float past
the margin float and thus have different caption numbering. For this reason the margin
float contain a float blocking device such that any unplaced floats are forced to be placed
before we start typesetting a margin figure.

Additionally, note that the term “float” is used very lightly here. As things are placed
using \marginpar, margin floats only “float” on the page it self, they never float on to the
next page.

The marginfigure and margintable environments can of course be adjusted using
\setfloatadjustment, default

\setfloatadjustment{marginfigure}{\centering}
\setfloatadjustment{margintable}{\centering}

It may be useful to adjust the captioning separately, for this we have added

| \setmarginfloatcaptionadjustment{(float)}{{code)} \

where (float) is figure or table. The intent is to enable the user to choose a different
captioning style (or similar) within a margin float, for example typesetting the caption
ragged left/right depending on the page.

This left/right depending on the page is a little hard to do, so for the \marginpar (which
the margin float use internally) we provide the following two macros

\setmpjustification{(at left of textblock)}{{at right of textblock)}
\mpjustification

Basically \mpjustification execute (at left of textblock) when it is executed at the left of
the text block and vice versa. For it to work the margin into which the marginpar should
do, has to be specified using marginparmargin. The default is

\setmpjustification{\raggedleft}{\raggedright}
To have both a margin figure and its caption typeset ragged against the text block, use

\setfloatadjustment{marginfigure}{\mpjustification}
\setmarginfloatcaptionadjustment{figure}{\captionstyle{\mpjustification}}

It may be useful to allow hyphenation within the raggedness, which can be done using the
ragged2e package and

\setmpjustification{\RaggedLeft}{\RaggedRight}

10.2 SETTING OFF A FLOAT

Sometimes it is desireable to set off a float, more probably an illustration than a tabular,
from its surroundings. The framed environment, described later in Chapter 15, might
come in handy for this.

175

10. FLOATS AND CAPTIONS

FRAMED FIGURE

Figure 10.1: Example framed figure

FRAMED FIGURE AND CAPTION

Figure 10.2: Example framed figure and caption

The following code produces the example Figures 10.1 and 10.2.

\begin{figure}

\centering

\begin{framed}\centering

FRAMED FIGURE

\end{framed}

\caption{Example framed figure}\label{fig:framef}
\end{figure}

\begin{figure}

\begin{framed}\centering

FRAMED FIGURE AND CAPTION

\caption{Example framed figure and caption}\label{fig:framefcap}
\end{framed}

\end{figure}

If framing seems overkill then you can use rules instead, as in the example code below
which produces Figures 10.3 and 10.4.

\begin{figure}

\centering

\hrule\vspace{\onelineskip}

RULED FIGURE

\vspace{\onelineskip}\hrule
\vspace{\onelineskip}

\caption{Example ruled figure}\label{fig:rulef}
\end{figure}

\begin{figure}

\centering
\hrule\vspace{\onelineskip}
RULED FIGURE AND CAPTION
\vspace{\onelineskip}\hrule
\vspace{0.2pt}\hrule
\vspace{\onelineskip}

176

10.3. Multiple floats

\caption{Example ruled figure and caption}\label{fig:rulefcap}
\hrule
\end{figure}

10.3 MULTIPLE FLOATS

You can effectively put what you like inside a float box. Normally there is just a single
picture or tabular in a float but you can include as many of these as will fit inside the box.
Three typical cases of multiple figures/tables in a single float come to mind:

¢ Multiple illustrations/tabulars with a single caption.
* Multiple illustrations/tabulars each individually captioned.

* Multiple illustrations/tabulars with one main caption and individual subcaptions.

Figure 10.5 is an example of multiple illustrations in a single float with a single caption.
The figure was produced by the following code.

\begin{figure}

\centering

\hspace*{\fill}

{ILLUSTRATION 1} \hfill {ILLUSTRATION 2}

\hspace*{\fill}

\caption{Example float with two illustrations} \label{fig:multil}

\end{figure}

177

10. FLOATS AND CAPTIONS

GRAPHIC 1 GRAPHIC 2
Figure 10.6: Graphic 1 in a float Figure 10.7: Graphic 2 in same float

The \hspace*{\fill} and \hfill commands were used to space the two illustrations
equally. Of course \includegraphics or tabular environments could just as well be
used instead of the {ILLUSTRATION N} text.

The following code produces Figures 10.6 and 10.7 which are examples of two sepa-
rately captioned illustrations in one float.

\begin{figure}
\centering
\begin{minipage}{0.4\textwidth}
\centering
GRAPHIC 1
\caption{Graphic 1 in a float} \label{fig:mult2}
\end{minipage}
\hfill
\begin{minipage}{0.4\textwidth}
\centering
GRAPHIC 2
\caption{Graphic 2 in same float} \label{fig:mult3}
\end{minipage}
\end{figure}

In this case the illustrations (or graphics or tabulars) are put into separate minipage envi-
ronments within the float, and the captions are also put within the minipages. Note that
any required \label must also be inside the minipage. If you wished, you could add yet
another (main) caption after the end of the two minipages.

It is slightly more complex if you want to put, say, both a tabulation captioned as a
table and a graph, captioned as a figure, which illustrates the tabulation, as a float only
permits one kind of caption. The class solves this problem by letting you define “fixed’
captions which are independent of the particular kind of the float. These are described in
detail later.

Things do get a little trickier, though, if the bodies and/or the captions in a float are
different heights (as in figures 10.6 and 10.7) and you want to align them horizontally.
Here are some examples.

This code produces figures 10.8 and 10.9. The new \hhrule macro produces a rule
twice as thick as \hrule does.

\newcommand*{\hhrule}{\hrule height 0.8ptl}) double thickness

\begin{figure}

\hhrule \vspace{\onelineskip}

\null\hfill\parbox{0.45\1inewidth}{%
\centering

178

10.3. Multiple floats

This is the right figure which is taller

Aligned to the center of the right figure than the first one (the one at the left)

Figure 10.8: Left center aligned Figure 10.9: Right figure. This has
more text than the adjacent caption
(10.8) so the heights are unequal

Aligned to the center of the right figure
H\hfill
\parbox{0.45\1inewidth}{},
\centering
This is the right figure which is taller
than the first one (the one at the left)
H\hfill\null
\vspace{\onelineskip}\hrule
\null\hfill\parbox[t]{0.4\linewidth}{%
\caption{Left figure}\label{fig:left1}}
H\hfill
\parbox [t]{0.4\1linewidth}{},

\caption{Right figure. This has more text than the adjacent
caption (\ref{fig:leftl}) so the heights are unequall
\label{fig:right1}%

F\hfill\null
\hhrule
\end{figure}

The following code produces Figures 10.10 and 10.11.

\begin{figure}
\hhrule \vspace{0.5\onelineskip}
\null\hfill\parbox [t]{0.45\1linewidth}{/
\centering
Aligned to the top of the right figure
H\hfill
\parbox [t]{0.45\1inewidth}{}
\centering
This is the right figure which is taller
than the first one (the one at the left)
F\hfill\null
\vspace{0.5\onelineskip}\hrule
\null\hfill\parbox [t]{0.4\1linewidth}{%
\caption{Left top aligned}\label{fig:left2}/,
H\hfill

179

10. FLOATS AND CAPTIONS

Aligned to the top of the right figure This is the right figure which is taller
than the first one (the one at the left)

Figure 10.10: Left top aligned Figure 10.11: Right figure. This has
more text than the adjacent caption
(10.10) so the heights are unequal

\parbox[t]{0.4\1linewidth}{%

\caption{Right figure. This has more text than the adjacent
caption (\ref{fig:left2}) so the heights are unequall}’
\label{fig:right2}/

HN\hfill\null
\hhrule
\end{figure}

The next code produces Figures 10.12 and 10.13.

\begin{figure}
\hhrule \vspace{0.5\onelineskip}
\null\hfill\parbox[b]{0.45\1inewidth}{%
\centering
Aligned to the bottom of the right figure
H\hfill
\parbox [b]{0.45\1inewidth}{}
\centering
This is the right figure which is taller
than the first one (the one at the left)
F\hfill\null
\vspace{0.5\onelineskip}\hrule
\null\hfill\parbox[t]{0.4\linewidth}{%
\caption{Left bottom aligned}\label{fig:left3}},
HN\hfill
\parbox[t]{0.4\1linewidth}{/

\caption{Right figure. This has more text than the adjacent
caption (\ref{fig:left3}) so the heights are unequall}
\label{fig:right3}%

FN\hfill\null
\hhrule
\end{figure}

| \newsubfloat{(float)} |

The \newsubfloat command creates subcaptions (\subcaption, \subtop and
\subbottom) for use within the float environment (fenv) previously defined via

180

10.4. Where LaTeX puts floats

This is the right figure which is taller
Aligned to the bottom of the right figure than the first one (the one at the left)

Figure 10.12: Left bottom aligned Figure 10.13: Right figure. This has
more text than the adjacent caption
(10.12) so the heights are unequal

\newfloat [{...)]{{fenv)}{(...)}. Subcaptions are discussed below in §10.9.

10.4 WHERE LATEX PUTS FLOATS

Note that this section is not just relevant to the class, but for LaTeX in general. The main
difference for placement between the class and, say, the book class are the default values
of some settings.

The general format for a float environment is:
\begin{float}[(loc)] ... \end{float} or for double column floats:
\begin{float*} [(loc)] ... \end{float*}
where the optional argument (loc), consisting of one or more characters, specifies a location
where the float may be placed. Note that the multicol package only supports the starred
floats and it will not let you have a single column float. The possible (loc) values are one
or more of the following;:

b bottom: at the bottom of a page. This does not apply to double column floats as they
may only be placed at the top of a page.

h here: if possible exactly where the float environment is defined. It does not apply to
double column floats.

p page: on a separate page containing only floats (no text); this is called a float page.
t top: at the top of a page.

I make an extra effort to place the float at the earliest place specified by the rest of the
argument.

The default for (loc) is tbp, so the float may be placed at the top, or bottom, or on a float
page; the default works well 95% of the time. Floats of the same kind are output in defi-
nition order, except that a double column float may be output before a later single column
float of the same kind, or vice-versa'. A float is never put on an earlier page than its def-
inition but may be put on the same or later page of its definition. If a float cannot be
placed, all suceeding floats will be held up, and LaTeX can store no more than 16 held up
floats. A float cannot be placed if it would cause an overfull page, or it otherwise cannot be
fitted according the float placement parameters. A \clearpage or \cleardoublepage
or \end{document} flushes out all unprocessed floats, irrespective of the (loc) and float
parameters, putting them on float-only pages.

1 As of 2015 this has been fixed in the IATEX kernel.

181

10. FLOATS AND CAPTIONS

| \setfloatlocations{{float)}{(locs)}

You can set the location for all floats of type (float) to (locs) with the \setfloatlocations
declaration. The class initialises these using:

\setfloatlocations{figure}{tbp}
\setfloatlocations{table}{tbp}

| \suppressfloats [{pos)] ‘

You can use the command \suppressfloats to suppress floats at a given (pos) on
the current page. \suppressfloats[t] prevents any floats at the top of the page
and \suppressfloats[b] prevents any floats at the bottom of the page. The simple
\suppressfloats prevents both top and bottom floats.

\FloatBlock
\FloatBlockAllowAbove
\FloatBlockAllowBelow

Contrary to \suppressfloats \FloatBlock’ will block floats from passing this point,

i.e. it demands ETgX to place any unprocessed floats before proceeding. It is similar to

\clearpage but it does not necessarily introduce a page break before proceeding.
\FloatBlockAllowAbove lessens the restriction a little, in a situation like this

\FloatBlock

some float here

\FloatBlockAllowAbove will allow the float to be placed at the top of the same page as
\FloatBlock. \FloatBlockAllowBelow is the reverse situation.

It may be beneficial to be able to add \FloatBlock to sectional commands. This can
be done via

| \setFloatBlockFor{(sectional name)} \
where (sectional name) is without the \, i.e.
\setFloatBlockFor{section}

The flafter package, which should have come with your LaTeX distribution, provides a
means of preventing floats from moving backwards from their definition position in the
text. This can be useful to ensure, for example, that a float early in a \section{...}is
not typeset before the section heading.

Figures 10.14 and 10.15 illustrate the many float parameters and Table 10.1 lists the float
parameters and the typical standard default values. The lengths controlling the spaces
surroundind floats are listed in Table 10.2; typical values are shown as they depend on
both the class and the size option.

Given the displayed defaults, the height of a top float must be less than 70% of the
textheight and there can be no more than 2 top floats on a text page. Similarly, the height
of a bottom float must not exceed 30% of the textheight and there can be no more than 1
bottom float on a text page. There can be no more than 3 floats (top, bottom and here) on

2Yes, it is the same as \FloatBarrier from the placeins package, kudos to Donald Arseneau. For various
reasons we cannot emulate the placeins package and its options, thus we have verbatimly copied and renamed
it instead.

182

10.4. Where LaTeX puts floats

\topfraction

\topnumber

\textfraction

\bottomnumber

\bottomfraction

Figure 10.14: Float and text page parameters

183

10. FLOATS AND CAPTIONS

A TOP FLOAT

\floatsep

| |
A TOP FLOAT \topfigrule l |

[First text line after top float ... \

l \textfloatsep

\ ... last text line before ‘here’ float!

| \intextsep

| A ‘'HERE’ FLOAT |
| |
‘ l \intextsep ‘

‘First text line after ‘here’ float ... |

.last text line before bottom ﬂoat.\

|

‘ \textfloatsep

| |
I

| A BOTTOM FLOAT \botfigrule | ‘
- - - - —

Figure 10.15: Float parameters

184

10.4. Where LaTeX puts floats

Table 10.1: Float placement parameters

Parameter Controls Default
Counters — change with \setcounter
topnumber max number of floats at top of a page 2
bottomnumber max number of floats at bottom of a page 1
totalnumber max number of floats on a text page 3
dbltopnumber like topnumber for double column floats 2
Commands — change with \renewcommand
\topfraction max fraction of page reserved for top floats 0.7
\bottomfraction max fraction of page reserved for bottom 0.3
floats
\textfraction min fraction of page that must have text 0.2
\dbltopfraction like \topfraction for double column floats 0.7
floats
\floatpagefraction min fraction of a float page that must have 0.5
float(s)
\dblfloatpagefraction like \floatpagefraction for double col- 0.5
umn floats
Table 10.2: Float spacing parameters
Parameter Controls Default
Text page lengths — change with \setlength
\floatsep vertical space between floats 12pt
\textfloatsep vertical space between a top (bottom) float 20pt
and suceeding (preceeding) text
\intextsep vertical space above and below an h float 12pt
\dblfloatsep like \floatsep for double column floats 12pt
\dbltextfloatsep like \textfloatsep for double column 20pt
floats
Float page lengths — change with \setlength
\@fptop space at the top of the page Opt plus 1fil
\@fpsep space between floats 8pt plus 2fil
\@fpbot space at the bottom of the page Opt plus 1fil
\@dblfptop like \@fptop for double column floats Opt plus 1fil
\@dblfpsep like \@fpsep for double column floats 8pt plus 2fil
\@dblfpbot like \@fpbot for double column floats Opt plus 1fil

185

10. FLOATS AND CAPTIONS

the page. At least 20% of a text page with floats must be text. On a float page (one that
has no text, only floats) the sum of the heights of the floats must be at least 50% of the
textheight. The floats on a float page should be vertically centered.

Under certain extreme and unlikely conditions and with the defaults LaTeX might have
trouble finding a place for a float. Consider what will happen if a float is specified as a
bottom float and its height is 40% of the textheight and this is followed by a float whose
height is 90% of the textheight. The first is too large to actually go at the bottom of a text
page but too small to go on a float page by itself. The second has to go on a float page but
it is too large to share the float page with the first float. LaTeX is stuck!

At this point it is worthwhile to be precise about the effect of a one character (loc)
argument:

b means: ‘put the float at the bottom of a page with some text above it, and nowhere

else’. The float must fit into the \bottomfraction space otherwise it and subse-
quent floats will be held up.

h means: ‘put the float at this point and nowhere else’. The float must fit into the space
left on the page otherwise it and subsequent floats will be held up.

p means: ‘put the float on a page that has no text but may have other floats on it’. There
must be at least ‘\floatpagefraction’ worth of floats to go on a float only page
before the float will be output.

t means: ‘put the float at the top of a page with some text below it, and nowhere else’.
The float must fit into the \topfraction space otherwise it and subsequent floats
will be held up.

l... means: ‘ignore the \ . . . fraction values for this float’.

You must try and pick a combination from these that will let LaTeX find a place to put
your floats. However, you can also change the float parameters to make it easier to find
places to put floats. Some examples are:

* Decrease \textfraction to get more ‘float’ on a text page, but the sum
of \textfraction and \topfraction and the sum of \textfraction and
\bottomfraction should not exceed 1.0, otherwise the placement algorithm falls
apart. A minimum value for \textfraction is about 0.10 — a page with less than
10% text looks better with no text at all, just floats.

* Both \topfractionand \bottomfraction canbe increased, and it does not matter
if their sum exceeds 1.0. A good typographic style is that floats are encouraged to go
at the top of a page, and a better balance is achieved if the float space on a page is
larger at the top than the bottom.

* Making \floatpagefraction too small might have the effect of a float page just
having one small float. However, to make sure that a float page never has more than
one float on it, do:

\renewcommand{\floatpagefraction}{0.01}
\setlength{\@fpsep}{\textheight}

* Setting \@fptop and \@dblftop to Opt, \@fpsep to 8pt, and \@fpbot and
\@dblfpbot to Opt plus 1£fil will force floats on a float page to start at the top of
the page.

186

10.5. Captions

e Setting \@fpbot and \@dblfpbot to Opt, \@fpsep to 8pt, and \@fptop and
\@dblfptop to Opt plus 1fil will force floats on a float page to the bottom of
the page.

If you are experimenting, a reasonable starting position is:

\setcounter{topnumber}{3}
\setcounter{bottomnumber}{2}
\setcounter{totalnumber}{4}
\renewcommand{\topfraction}{0.85}
\renewcommand{\bottomfraction}{0.5}
\renewcommand{\textfraction}{0.15}
\renewcommand{\floatpagefraction}{0.7}

and similarly for double column floats if you will have any. Actually, there is no need to
try these settings as they are the default for this class.

One of LaTeX’s little quirks is that on a text page, the ‘height’ of a float is its actual
height plus \textfloatsep or \floatsep, while on a float page the ‘height’ is the actual
height. This means that when using the default (loc) of [tbp] at least one of the text
page float fractions (\topfraction and/or \bottomfraction) must be larger than the
\floatpagefraction by an amount sufficient to take account of the maximum text page
separation value.

10.5 CAPTIONS

Some publishers require, and some authors prefer, captioning styles other than the one
style provided by standard LaTeX. Further, some demand that documents that include
multi-part tables use a continuation caption on all but the first part of the multi-part table.
For the times where such a table is specified by the author as a set of tables, the class pro-
vides a simple ‘continuation’ caption command to meet this requirement. It also provides
a facility for an ‘anonymous’ caption which can be used in any float environment. Cap-
tions can be defined that are suitable for use in non-float environments, such as placing a
picture in a minipage and captioning it just as though it had been put into a normal figure
environment.

The commands described below are very similar to those supplied by the ccaption
package [?].

Recommended alternative

As an alternative to the styling features in the class we recommend the caption package by
Axel Sommerfeldt (which provides many more features compared to the class).

As of late 2020, Axel was kind enough to add a feature to the caption package such that
if loaded with memoir then most of the styling commands presented in the next section
will be mapped onto the equivalent settings used by the caption package. Just make sure
your settings are set after loading caption.’

3Be aware that other packages may auto load the caption package.

187

10. FLOATS AND CAPTIONS

10.6 CAPTION STYLING

Just as a reminder, the default appearance of a caption for, say, a table looks like this:
Table 11.7: Title for the table

That is, it is typeset in the normal body font, with a colon after the number.
The class uses the following to specify the standard LaTeX caption style:

\captionnamefont{}
\captiontitlefont{}
\captionstyle{}
\captionwidth{\linewidth}
\normalcaptionwidth
\normalcaption
\captiondelim{: }

These macros are explained in detail below.
| \captiondelim{(delim)} \

The default captioning style is to put a delimeter in the form of a colon between the caption
number and the caption title. The command \captiondelim can be used to change the
delimeter. For example, to have an en-dash instead of the colon, \captiondelim{-- 7}
will do the trick. Notice that no space is put between the delimeter and the title unless it
is specified in the (delim) parameter. The class initially specifies \captiondelim{: } to
give the normal delimeter.

| \captionnamefont{(fontspec)} \

The (fontspec) specified by \captionnamefont is used for typesetting the caption name;
that is, the first part of the caption up to and including the delimeter (e.g., the portion
‘Table 3:"). (fontspec) can be any kind of font specification and/or command and/or text.
This first part of the caption is treated like:

{\captionnamefont Table 3: }

so font declarations, not font text-style commands, are needed for (fontspec). For instance,

\captionnamefont{\Large\sffamily}

to specify a large sans-serif font. The class initially specifies \captionnamefont{} to give
the normal font.

| \captiontitlefont{{fontspec)} ‘

Similarly, the (fontspec) specified by \captiontitlefont is used for typesetting the title
text of a caption. For example, \captiontitlefont{\itshapel} for an italic title text.
The class initially specifies \captiontitlefont{} to give the normal font.

\captionstyle [(short)]{(style)}
\raggedleft \centering \raggedright \centerlastline

By default the name and title of a caption are typeset as a block (non-indented) paragraph.
\captionstyle can be used to alter this. Sensible values for (style) are: \centering,
\raggedleft or \raggedright for styles corresponding to these declarations. The

188

10.6. Caption styling

\centerlastline style gives a block paragraph but with the last line centered. The class
initially specifies \captionstyle{} to give the normal block paragraph style.

If a caption is less than one line in length it may look odd if the (style) is \raggedright,
say, as it will be left justified. The optional (short) argument to \captionstyle can be
used to specify the style for such short captions if it should differ from that for multiline
captions. For example, I think that short captions look better centered:

\captionstyle[\centering] {\raggedright}

\hangcaption
\indentcaption{(length)}
\normalcaption

The declaration \hangcaption causes captions to be typeset with the second and later
lines of a multiline caption title indented by the width of the caption name. The declara-
tion \indentcaption will indent title lines after the first by (length). These commands
are independent of the \captionstyle{. ..} and have no effect on short captions. Note
that a caption will not be simultaneously hung and indented. The \normalcaption dec-
laration undoes any previous \hangcaption or \indentcaption declaration. The class
initially specifies \normalcaption to give the normal non-indented paragraph style.

\changecaptionwidth
\captionwidth{(length)}
\normalcaptionwidth

Issuing the declaration \changecaptionwidth causes the captions to be typeset
within a total width (length) as specified by \captionwidth. Issuing the declaration
\normalcaptionwidth causes captions to be typeset as normal full width captions. The
class initially specifies

\normalcaptionwidth

\captionwidth{\linewidth}

to give the normal width. If a caption is being set within the side captioned environments
from the sidecap package [?] then it must be a \normalcaptionwidth caption.

\precaption{(pretext)}
\captiontitlefinald{(text)}
\postcaption{(posttext)}

The commands \precaption and \postcaption specify (pretext) and (posttext) that
will be processed at the start and end of a caption. For example

\precaption{\rule{\linewidth}{0.4pt}\par}
\postcaption{\rule{\linewidth}{0.4pt}}

will draw a horizontal line above and below the captions. The class initially specifies

\precaption{}
\postcaption{}

to give the normal appearance.
The argument to \captiontitlefinal is put immediately after the title text but will
not appear in the LoF or LoT. The default is

189

10. FLOATS AND CAPTIONS

Table 10.3
REDESIGNED TABLE CAPTION STYLE

three 111
five A%
eight VIII

\captiontitlefinal{}
but it could be used instead as, say
\captiontitlefinal{.}

to put a period (full stop) after the title.

If any of the above commands are used in a float, or other, environment their effect
is limited to the environment. If they are used in the preamble or the main text, their
effect persists until replaced by a similar command with a different parameter value. The
commands do not affect the appearance of the title in any ‘List of...".

\\ [(length)]
* [(length)]
The normal LaTeX command \\ can be used within the caption text to start a new line.

Remember that \\ is a fragile command, so if it is used within text that will be added to a
‘List of...” it must be protected. As examples:

\caption{Title with a \protect\\ new line in
both the body and List of}

\caption[List of entry with no new linel¥
{Title with a \\ new line}

\caption[List of entry with a \protect\\ new linel
{Title text}

Effectively, a caption is typeset as though it were:
\precaption
{\captionnamefont NAME NUMBER\captiondelim}

{\captionstyle\captiontitlefont THE TITLE\captiontitlefinal}
\postcaption

Replacing the above commands by their defaults leads to the simple format:
{NAME NUMBER: }{THE TITLE}

As well as using the styling commands to make simple changes to the captioning style,
more noticeable modifications can also be made. To change the captioning style so that the
name and title are typeset in a sans font it is sufficient to do:

\captionnamefont{\sffamily}
\captiontitlefont{\sffamily}

A more obvious change in styling is shown in Table 10.3, which was coded as:

190

10.7. Continuation captions and legends

\begin{table}

\centering

\captionnamefont{\sffamily}

\captiondelim{}

\captionstyle{\\}

\captiontitlefont{\scshape}
\setlength{\belowcaptionskip}{10pt}

\caption{Redesigned table caption style} \label{tab:style}
\begin{tabular}{lr} \toprule

\end{table}
This leads to the approximate caption format (processed within \centering):
{\sffamily NAME NUMBER}{\\ \scshape THE TITLE}

Note that the newline command (\\) cannot be put in the first part of the format (i.e., the
{\sffamily NAME NUMBER}); it has to go into the second part, which is why it is specified
via \captionstyle{\\} and not \captiondelim{\\}.

If a mixture of captioning styles will be used you may want to define a special cap-
tion command for each non-standard style. For example for the style of the caption in
Table 10.3:

\newcommand{\mycaption}[2] [\@empty] {
\captionnamefont{\sffamily\hfill}
\captiondelim{\hfill}
\captionstyle{\centerlastline\\}
\captiontitlefont{\scshape}
\setlength{\belowcaptionskip}{10pt}

\ifx \@empty#1 \caption{#2}\else \caption[#1]{#2}\fi}

Remember that any code that involves the @ sign must be either in a package (sty) file or
enclosed between a \makeatletter ... \makeatother pairing (see §E.4).
The code for the Table 10.3 example can now be written as:

\begin{table}

\centering

\mycaption{Redesigned table caption style} \label{tab:style}
\begin{tabular}{1lr} \toprule

\éﬁ&{table}

Note that in the code for \mycaption I have added two \hfill commands and
\centerlastline compared with the original specification. It turned out that the original
definitions worked for a single line caption but not for a multiline caption. The additional
commands makes it work in both cases, forcing the name to be centered as well as the last
line of a multiline title, thus giving a balanced appearence.

10.7 CONTINUATION CAPTIONS AND LEGENDS

] \contcaptiond{(text)} ‘

191

10. FLOATS AND CAPTIONS

Table 10.4: A multi-part table

just a single line 1

Table 10.4: Continued

just a single line 2

The \contcaption command can be used to put a ‘continued’ or ‘concluded’ caption into
a float environment. It neither increments the float number nor makes any entry into a
float listing, but it does repeat the numbering of the previous \caption command.

Table 10.4 illustrates the use of the \contcaption command. The table was produced
from the following code.

\begin{table}

\centering

\caption{A multi-part table} \label{tab:m}
\begin{tabular}{lc} \toprule

just a single line & 1 \\ \bottomrule
\end{tabular}

\end{table}

\begin{table}

\centering

\contcaption{Continued}
\begin{tabular}{lc} \toprule

just a single line & 2 \\ \bottomrule
\end{tabular}

\end{table}

\begin{table}

\centering

\contcaption{Concluded}
\begin{tabular}{lc} \toprule

just a single line & 3 \\ \bottomrule
\end{tabular}

\end{table}

| \legend{({text)} |

The \legend command is intended to be used to put an anonymous caption, or legend
into a float environment, but may be used anywhere.
For example, the following code was used to produce the two-line Table 10.5. The

192

10.7. Continuation captions and legends

Table 10.4: Concluded

just a single line 3

Table 10.5: Another table

A legendary table 5
with two lines 6

The legend

\legend command can be used within a float independently of any \caption command.

\begin{table}
\centering
\caption{Another table} \label{tab:legend}
\begin{tabular}{lc} \toprule
A legendary table & 5 \\
with two lines & 6 \\ \bottomrule
\end{tabular}
\legend{The legend}
\end{table}

Captioned floats are usually thought of in terms of the table and figure environ-
ments. There can be other kinds of float. As perhaps a more interesting example, the
following code produces the titled marginal note which should be displayed near here.

\marginpar{\legend{LEGEND}
This is a marginal note with a legend.}

If you want the legend text to be included in the “List of...” you can do it like this with
the \addcontentsline macro.

\legend{Legend title}

% left justified

\addcontentsline{lot}{table}{Legend title} % or

% indented
\addcontentsline{lot}{table}{\protect\numberline{}Legend title}

The first of these forms will align the first line of the legend text under the normal table
numbers. The second form will align the first line of the legend text under the normal
table titles. In either case, second and later lines of a multi-line text will be aligned under
the normal title lines.

As an example, the Legendary table is produced by the following code:

\begin{table}

193

LEGEND

This is a
marginal
note with a
legend.

10. FLOATS AND CAPTIONS

Legendary table

An anonymous table 5
with two lines 6

Table: Named legendary table

seven VII
eight VIII

\centering
\captiontitlefont{\sffamily}
\legend{Legendary table}
\addcontentsline{lot}{table}{Legendary table (toc 1)}
\addcontentsline{lot}{table}{\protect\numberline{}
Legendary table (toc 2)}

\begin{tabular}{lc} \toprule

An anonymous table & 5 \\

with two lines & 6 \\ \bottomrule
\end{tabular}
\end{table}

Look at the List of Tables to see how the two forms of \addcontentsline are typeset.
| \namedlegend [(short-title)] {(long-title)} \

As a convenience, the \namedlegend command is like the \caption command except
that it does not number the caption and, by default, puts no entry into a ‘List of..." file.
Like the \caption command, it picks up the name to be prepended to the title text from
the float environment in which it is called (e.g., it will use \tablename if called within a
table environment). The following code is the source of the Named legendary table.

\begin{table}

\centering
\captionnamefont{\sffamily}
\captiontitlefont{\itshape}
\namedlegend{Named legendary table}
\begin{tabular}{lr} \toprule

seven & VII \\

eight & VIII \\ \bottomrule
\end{tabular}

\end{table}

\flegfloat{(name)}
\flegtocfloat{(title)}

194

10.7. Continuation captions and legends

The macro \flegfloat, where float is the name of a float environment (e.g., figure)
is called by the \namedlegend macro. It is provided as a hook that defines the (name)
to be used as the name in \namedlegend. Two defaults are provided, \flegtable and
\flegfigure defined as:

\newcommand{\flegtable}{\tablename}
\newcommand{\flegfigure}{\figurename}

which may be altered via \renewcommand if desired.

The macro \flegtocfloat, where again float is the name of a float environment
(e.g., table) is also called by the \namedlegend macro. It is provided as a hook that can
be used to add (title) to the ‘List of...”. Two examplars are provided, \flegtocfigure
and \flegtoctable. By default they are defined to do nothing, and can be changed via
\renewcommand. For instance, one could be changed for tables as:

\renewcommand{\flegtoctable} [1]{
\addcontentsline{lot}{table}{#1}}

The \legend command produces a plain, unnumbered heading. It can also be useful
sometimes to have named and numbered captions outside a floating environment, perhaps
in a minipage, if you want the table or picture to appear at a precise location in your
document.

\newfixedcaption [(capcommand)]{{command)}{{float)}
\renewf ixedcaption [{capcommand)]{{command)}{(float)}
\providefixedcaption [(capcommand)] {{command)}{(float)}

The \newfixedcaption command, and its friends, can be used to create or modify a
captioning (command) that may be used outside the float environment (float). Both the
environment (float) and a captioning command, {capcommand), for that environment must
have been defined before calling \newfixedcaption. Note that \namedlegend can be
used as (capcommand).

For example, to define a new \figcaption command for captioning pictures outside
the figure environment, do

\newfixedcaption{\figcaption}{figure}

The optional {capcommand) argument is the name of the float captioning command that is
being aliased. It defaults to \caption. As an example of where the optional argument
is required, if you want to create a new continuation caption command for non-floating
tables, say \ctabcaption, then do

\newfixedcaption[\contcaption]{\ctabcaption}{table}

Captioning commands created by \newfixedcaption will be named and numbered
in the same style as the original (capcommand), can be given a \1abel, and will appear in
the appropriate ‘List of...”. They can also be used within floating environments, but will
not use the environment name as a guide to the caption name or entry into the ‘List of...".
For example, using \ctabcaption in a figure environment will still produce a Table...
named caption.

Sometimes captions are required on the opposite page to a figure, and a fixed caption
can be useful in this context. For example, if figure captions should be placed on an oth-
erwise empty page immediately before the actual figure, then this can be accomplished by
the following hack:

195

10. FLOATS AND CAPTIONS

\newfixedcaption{\figcaption}{figure}

\afterpage{ % fill current page then flush pending floats
\clearpage
\begin{midpage} J vertically center the caption
\figcaption{The caption} % the caption
\end{midpage}
\clearpage
\begin{figure}THE FIGURE, NO CAPTION HERE\end{figure}
\clearpage

} % end of \afterpage

Note that the afterpage package [?] is needed, which is part of the required tools bundle.
The midpage package supplies the midpage environment, which can be simply defined as:

\newenvironment{midpage}{\vspacex{\fill}}{\vspace*{\fill}}

The code, in particular the use of \clearpage, might need adjusting to meet your partic-
ular requirements.

* \clearpage gets you to the next page, which may be odd or even.
* \cleardoublepage gets you to the next odd-numbered page.

* \cleartoevenpage ensures that you get to the next even-numbered page.

As a word of warning, if you mix both floats and fixed environments with the same
kind of caption you have to ensure that they get printed in the correct order in the final
document. If you do not do this, then the ‘List of...” captions will come out in the wrong
order (the lists are ordered according the page number in the typeset document, not your
source input order).

10.8 BILINGUAL CAPTIONS

Some documents require bilingual (or more) captions. The class provides a set of com-
mands for bilingual captions. Extensions to the set, perhaps to support trilingual caption-
ing, are left as an exercise for the document author. Essentially, the bilingual commands
call the \caption command twice, once for each language.

Several commands for bilingual captions are provided. They all produce the same
appearance in the text but differ in what they put into the ‘List of...".

\bitwonumcaption [{label)]{(short1) }{(long1)}%
{(NAME)}{ (short2) }{(long2)}
\bionenumcaption [{label)]{(short1)}{(long1)}%
{(NAME)}{ (short2) }{(long2)}

Bilingual captions can be typeset by the \bitwonumcaption command which has six
arguments. The first, optional argument (label), is the name of a label, if required. (short1)
and (longl) are the short (i.e., equivalent to the optional argument to the \caption com-
mand) and long caption texts for the main language of the document. The value of the
(NAME) argument is used as the caption name for the second language caption, while

196

10.8. Bilingual captions

EXAMPLE FIGURE WITH BITWONUMCAPTION
Figure 10.16: Long \bitwonumcaption
Bild 10.16: Lang \bitwonumcaption

EXAMPLE FIGURE WITH BIONENUMCAPTION
Figure 10.17: Long English \bionenumcaption
Bild 10.17: Lang Deutsch \bionenumcaption

(short2) and (long2) are the short and long caption texts for the second language. For ex-
ample, if the main and secondary languages are English and German and a figure is being
captioned:

\bitwonumcaption{Short}{Long}{Bild}{Kurz}{Lang}

If the short title text(s) is not required, then leave the appropriate argument(s) either empty
or as one or more spaces, like:

\bitwonumcaption[fig:bil]l{}{Long}{Bild}{ }{Lang}

Both language texts are entered into the appropriate ‘List of...’, and both texts are num-
bered.
Figure 10.16, typeset from the following code, is an example.

\begin{figure}
\centering
EXAMPLE FIGURE WITH BITWONUMCAPTION
\bitwonumcaption[fig:bill%
{}{Long \cs{bitwonumcaption}}/,
{Bild}{ M Lang \cs{bitwonumcaption}}
\end{figure}

Both \bionenumcaption and \bitwonumcaption take the same arguments. The dif-
ference between the two commands is that \bionenumcaption does not number the sec-
ond language text in the ‘List of...". Figure 10.17, typeset from the following, is an example
of this.

\begin{figure}
\centering
EXAMPLE FIGURE WITH BIONENUMCAPTION
\bionenumcaption[fig:bi3]%
{}{Long English \cs{bionenumcaption}}’
{Bild}{ }{Lang Deutsch \cs{bionenumcaption}}
\end{figure}

\bicaption [(label)]{(short1)}{(long1)}%
{(NAME)}{(long2)}

197

10. FLOATS AND CAPTIONS

EXAMPLE FIGURE WITH A RULED BICAPTION

Figure 10.18: Longingly
Bild 10.18: Langlauf

When bilingual captions are typeset via the \bicaption command the second lan-
guage text is not put into the ‘List of...”. The command takes 5 arguments. The optional
(label) is for a label if required. (short1) and (long1) are the short and long caption texts for
the main language of the document. The value of the (NAME) argument is used as the
caption name for the second language caption. The last argument, (long2), is the caption
text for the second language (which is not put into the ‘List of...").

For example, if the main and secondary languages are English and German:

\bicaption{Short}{Long}{Bild}{Langlauf}

If the short title text is not required, then leave the appropriate argument either empty or
as one or more spaces.

Figure 10.18 is an example of using \bicaption and was produced by the following
code:

\begin{figure}
\centering
EXAMPLE FIGURE WITH A RULED BICAPTION
\precaption{\rule{\linewidth}{0.4pt}\par}
\midbicaption{\precaption{}%
\postcaption{\rule{\linewidth}{0.4pt}}}
\bicaption[fig:bi2]}
{Short English \cs{bicaption}}{Longingly}/
{Bild}{Langlauf}
\end{figure}

\bicontcaption{(longl)}%
{(NAME)}{(long2)}

Bilingual continuation captions can be typeset via the \bicontcaption command. In this
case, neither language text is put into the ‘List of...”. The command takes 3 arguments.
(long1) is the caption text for the main language of the document. The value of the (NAME)
argument is used as the caption name for the second language caption. The last argument,
(long2), is the caption text for the second language. For example, if the main and secondary
languages are again English and German:

\bicontcaption{Continued}{Bild}{Fortgefahren}

] \midbicaption{(text)} ‘

The bilingual captions are implemented by calling \caption twice, once for each lan-
guage. The command \midbicaption, which is similar to the \precaption and

198

10.9. Subcaptions

\postcaption commands, is executed just before calling the second \caption. Among
other things, this can be used to modify the style of the second caption with respect to the
first. For example, if there is a line above and below normal captions, it is probably unde-
sirable to have a double line in the middle of a bilingual caption. So, for bilingual captions
the following may be done within the float before the caption:

\precaption{\rule{\linewidth}{0.4pt}\par}

\postcaption{}

\midbicaption{\precaption{}/,
\postcaption{\rule{\linewidth}{0.4pt}}}

This sets a line before the first of the two captions, then the \midbicaption{. ..} nulls
the pre-caption line and adds a post-caption line for the second caption. The class initially
specifies \midbicaption{}.

10.9 SUBCAPTIONS

The subcaption package enables the captioning of sub-figures within a larger figure, and
similarly for tables.* The subcaption package may be used with the class, or you can use
the class commands described below.

The class commands can only be used inside a float environment for which a subfloat® has
been specified via \newsubfloat.

| \subcaption [(list-entry)1{(subtitle) } \

The \subcaption command is similar to the \caption command and can only be used
inside a float environment. It typesets an identified (subtitle), where the identification is
an alphabetic character enclosed in parentheses. If the optional (list-entry) argument is
present, (list-entry) is added to the caption listings for the float. If it is not present, then
(subtitle) is added to the listing.

|l Caveat. For technical reasons the \1abel has to be placed inside (subtitle).

The (subtitle) is typeset within a box which is the width of the surrounding environ-
ment, so \subcaption should only be used within a fixed width box of some kind, for
example a minipage as shown below.

\begin{figure}

\centering

\begin{minipage}{0.3\textwidth}
\verb?Some verbatim text?
\subcaption{First text\label{firstl}}

\end{minipage}

\hfill

\begin{minipage}{0.3\textwidth}
\verb?More verbatim text?
\subcaption{Second text}

41t works nicely with the caption package.
5See §10.3.

199

10. FLOATS AND CAPTIONS

\end{minipage}
\caption{Verbatim texts}
\end{figure}

As the example code shows, the \subcaption command provides a means of putting
verbatim elements into subfigures.

\subtop [(list-entry)] [(subtitle)]{(contents)}
\subbottom [(list-entry)] [{subtitle)]1{{contents)}

The command \subtop puts a subcaption identifier on top of (contents). If both optional
arguments are present, (list-entry) will be added to the appropriate listing, and (subtitle)
is placed above the (text) with the identifier. If only one optional argument is present this
is treated as being (subtitle); the identifier and (subtitle) are placed above the (text) and
(subtitle) is added to the listing. Regardless of the optional arguments the identifier is
always added to the listing and placed above the (text).

The \subbottom command is identical to \subtop except that the identifier, and po-
tentially the (subtitle), is placed below the (text). Note that verbatim text cannot be used in
the (fext) argument to \subbottom or \subtop.

Changed. The \label needs to be placed either in (subtitle), or from Summer 2025 as
part of (contents).

The main caption can be at either the top or the bottom of the float. The positioning of
the main and subcaptions are independent. For example

\begin{figure}
\subbottom{...} 7 captioned as (a) below
\subtop{...} % captioned as (b) above
\caption{...}

\end{figure}

If a figure that includes subfigures is itself continued then it may be desirable to con-
tinue the captioning of the subfigures. For example, if Figure 3 has three subfigures, say
A, B and C, and Figure 3 is continued then the subfigures in the continuation should be D,
E, etc.

\contsubcaption [(list-entry)] {(subtitle)}
\contsubtop [(list-entry)] [(subtitle)] {{text)}
\contsubbottom [(list-entry)] [(subtitle)]{(text)}
\subconcluded

The \contsubcaption, \contsuptop and \contsubbottom commands are the con-
tinued versions of the respective subcaptioning commands. These continue the subcaption
numbering scheme across (continued) floats. In any event, the main caption can be at the
top or bottom of the float. The \subconcluded command is used to indicate that the
continued (sub) float has been concluded and the numbering scheme is reinitialized. The
command should be placed immediately before the end of the last continued environment.

Note. They have the same rules about the placement of \ label as their normal counterparts.

200

Added
2025/09/24

10.9. Subcaptions

| SUBFIGURE ONE | | SUBFIGURE TWO
(a) Subfigure 1 (b) Subfigure 2

Figure 10.19: Figure with two subfigures

For example:

\begin{figure}

\subbottom{...} captioned as (a) below
\subbottom{...} captioned as (b) below
\caption{...}

\end{figure}

\begin{figure}

\contsubtop{...} captioned as (c) above
\contsubtop{...} captioned as (d) above
\contcaption{Concluded}

\subconcluded

\end{figure}

\begin{table}

\caption{...}

\subtop{...} captioned as (a) above
\subbottom{...} captioned as (b) below
\end{table}

\label{(labstr)}
\subcaptionref{(labstr)}

A\label command may be included in the (subtitle) argument of the subcaptioning com-
mands. Using the normal \ref macro to refer to the label will typeset the number of
the float (obtained from a \labeled main \caption) and the subcaption identifier. If
the \subcaptionref macro is used instead of \ref then only the subcaption identifier is
printed.

Added | Changed. Earlier versions allowed the syntax of \1abel ({bookmark)) {(labstr)}, as this
2023/09/2 1 s non-standard syntax regarding labels, this syntax has been removed.

As an example to show the difference between \subcaptionref and \ref, Fig-
ure 10.19 and the paragraph immediately following this one were produced by the code
shown below.

Figure 10.19 has two subfigures, namely 10.19(a) and (b).

Figure \ref{fig:twosubfig} has two subfigures,
namely \ref{sf:1} and \subcaptionref{sf:2}.
\begin{figure}

\centering

201

10. FLOATS AND CAPTIONS

\subbottom[Subfigure 1\label{sf:1}]{\fbox{SUBFIGURE ONE}}
\hfill

\subbottom[Subfigure 2\label{sf:2}]{\fbox{SUBFIGURE TWO}}
\caption{Figure with two subfigures} \label{fig:twosubfig}
\end{figure}

| \tightsubcaptions \loosesubcaptions \

As with many other aspects of typesetting the style of subcaptions may be specified.
There is a small amount of vertical space surrounding a subcaption. More space is used
after the \loosesubcaptions declaration compared to that produced after the default
\tightsubcaptions declaration.

\subcaptionsizeq{(size)}
\subcaptionlabelfont{(fontspec)}
\subcaptionfont{(fontspec)’}

The size of the font used for subcaptions is specified by \subcaptionsize, and the
fonts for the identifier and text are specified by \subcaptionlabelfont for the identifier
and by \subcaptionfont for the title text. The defaults are:

\subcaptionsize{\footnotesize}
\subcaptionlabelfont{\normalfont}
\subcaptionfont{\normalfont}

\subcaptionstyle{(style)}
\raggedleft \centering \raggedright \centerlastline

The identifier and title of a subcaption is typeset as a block (i.e., non-indented) paragraph
by specifying
\subcaptionstyle{}

Other styles are available by calling \subcaptionstyle with a styling (cmd). Val-
ues that you might use are: \centering for a centered paragraph, \raggedleft or
\raggedright for ragged left or right paragraphs, or \centerlastline which calls for
a block paragraph with the last line centered.

\hangsubcaption
\shortsubcaption
\normalsubcaption

The \hangsubcaption declaration causes subcaptions to be typeset with the iden-
tifier above the title. Following the \shortsubcaption declaration subcaptions
that are less than a full line in length are typeset left justified instead of centered.
The \normalsubcaption declaration, which is the default, undoes any previous
\hangsubcaption or \shortsubcaption declaration, so that subcaptions are normally
centered.

10.10 SIDE CAPTIONS

Typically captions are put either above or below the element they are describing. Some-
times it is desireable to put a caption at the side of the element instead.

202

10.10. Side captions

\begin{sidecaptionl} [{fortoc)] {(title)} [{label)]
the body of the float
\end{sidecaption}

The sidecaption environment is used for a sidecaption rather than a macro. The body
of the float is put inside the environment. For example:

\begin{figure}
\begin{sidecaption}{An illustration}[fig:ill]
\centering
\includegraphics{...}
\end{sidecaption}
\end{figure}

whereby the caption, ‘Figure N: An illustration’, will be placed in the margin alongside the
graphic, and for reference purposes will be given given the \label fig:ill.

\sidecapwidth \sidecapsep
\setsidecaps{(sep)+{{(width)}

The caption is setin a box \sidecapwidth wide (the default is \marginparwidth) off-
set \sidecapsep (default \marginparsep) into the margin. The command \setsidcaps
sets the \sidecapsep and \sidecapwidth to the given values. Changing the marginpar
parameters, for example with \setmarginnotes, will not change the side caption set-
tings. Note also that \checkandfixthelayout neither checks nor fixes the side caption
parameters.

\sidecapmargin{(margin)}
\ifscapmargleft \scapmarglefttrue \scapmargleftfalse

If the float is a single column float in a twocolumn document then the caption is al-
ways® placed in the adjacent margin, otherwise the \sidecapmargin command controls
the margin where the sidecaption will be placed. The possible values for (margin) are one
of: left, right, inner, or outer. If left or right is specified the caption will go into
the left or right margin. If inner or outer is specified then in a two sided document the
caption will be on different sides of the typeblock according to whether it is a recto or verso
page; in a one sided document the caption margin is fixed. The left margin is the default.

When the caption is to be set in the left margin, \ifscapmargleft is set true, and for
a right margin it is set false.

| \setsidecappos{(pos)} |

By default a sidecaption is vertically centered with respect to the float it is captioning. This
can be altered by using the \setsidecappos declaration. The allowed values for (pos)
are:

t — the top of the caption is aligned with the top of the float
¢ — (the default) the center of the caption is aligned with the center of the float

b — the bottom of the caption is aligned with the bottom of the float

The other kinds of simple captions can also be put at the side of a float. The positioning
and styling commands for these are exactly those for sidecaption. Bilingual captions,

%Well, nearly always. See the \overridescapmargin command later.

203

10. FLOATS AND CAPTIONS

which are not considered to be simple, can only be placed above or below a float; no
facilities are provided for setting them at the side..

\begin{sidecontcaption}{(title)} [(label)]
the body of the float
\end{sidecontcaption}

Sidecaptions may be continued with the sidecontcaption environment.

\begin{sidenamedlegend} [{fortoc)]{(title)}
the body of the float
\end{sidenamedlegend}

Named legends may be set at the side with the sidenamedlegend environment.

\begin{sidelegend}{(title)}
the body of the float
\end{sidelegend}

Legends may be set at the side with the sidelegend environment.

Caveat: Note that the side. . . envs expect the body of the float to be taller than the typeset
caption/legend. In case you write a long caption/legend for a short float, you may want
to visit this answer: http://tex.stackexchange.com/a/228412/3929.

10.10.1 Tweaks
[\sidecapstyle \

Just before the caption is set, the \sidecapstyle command is called. This may be used
to set the styling for the particular caption. By default it sets captions that are in the left
margin raggedleft, and those that are in the right margin are set raggedright. The default
definition is:

\newcommand*{\sidecapstyle}{’,
%% \captionnamefont{\bfseries}
\ifscapmargleft
\captionstyle{\raggedleft}’
\else
\captionstyle{\raggedright}/,
\fi}

You can change the command to suit your purposes; for example, uncommenting the
\captionnamefont line would result in the caption’s float name being set in a bold font.

\overridescapmargin{(margin)}
\sidecapraise

Sometimes the caption may not be placed exactly where you want it — it may be in the
wrong margin or at the wrong height.

The command \overridescapmargin will force the following caption into the
(margin) you specify which can only be left or right. In a twosided document where
\sidecapmargin is inner or outer and the caption goes in the wrong margin, it is likely

204

http://tex.stackexchange.com/a/228412/3929

10.10. Side captions

\sidecapmargin \overridescapmargin

Table 10.6: Permitted

arguments for some l.eft l.ef t
sidecaption related right right
commands AmhoE
outer

that the declaration \strictpagecheck will solve the problem. The wrong margin might
be chosen in a twocolumn document where the float is in the second column; use

\overridescapmargin{right}
to fix this.
The caption may not be at quite the height you want with respect to the float. The cap-

tion will be raised by the length \sidecapraise in addition to the calculated movement
(or lowered if \sidecapraise is negative).

| \sidecapfloatwidth{(length)} \

The float is set in a minipage with width sidecapfloatwidth, whose default defini-
tion is

\newcommand*{\sidecapfloatwidth}{\linewidth}

That is, the normal width is the same as the current \1inewidth. For a narrow table, say,
you may want to reduce this, for example to half by

\renewcommand*{\sidecapfloatwidth}{0.5\1inewidth}

Note that \sidecapfloatwidth is a macro, not a length, so it must be altered by using a
\renewcommand*, nof by \setlength.

If you do reduce the \sidecapfloatwidth you may notice that the sidecaption is
actually placed a distance \sidecapsep with respect to the float’s minipage, not with
respect to the text block.

Table 10.6 was created by the following code.

\newlength{\mylength}
\setlength{\mylength}{\linewidth}
\addtolength{\mylength}{-\sidecapsep}
\addtolength{\mylength}{-\sidecapwidth}
\begin{table}
\sidecapmargin{left}/,
\renewcommand*{\sidecapfloatwidth}{\mylength}/
\raggedleft
\begin{sidecaption}{%
Permitted arguments for some sidecaption related commands}[scap:one]
\centering
\begin{tabular}{cc} \toprule
\cs{sidecapmargin} & \cs{overridescapmargin} \\ \midrule

205

10. FLOATS AND CAPTIONS

\texttt{left} & \texttt{left} A\
\texttt{right} & \texttt{right} A\
\texttt{inner} & \\
\texttt{outer} & \\ \bottomrule
\end{tabular}

\end{sidecaption}

\end{table}

The calculations on the \mylength length are so that the sidecaption and float will just
fit inside the typeblock.

Note that the \raggedleft command before the sidecaption environment makes
the float’s minipage be placed raggedleft (i.e., moved across to the right hand edge of the
typeblock) while the \centering centers the tabular within the minipage. You can get
a variety of horizontal placements by judicious use of \raggedright, \centering and
\raggedleft commands. If you do move the float sideways to leave space for the caption
make sure that the caption will go to the side you want. In the example code I ‘moved’ the
float to the right so I made sure that the caption would go on the left by explicitly setting

\sidecapmargin{left}

As far as TeX is concerned a sidecaption takes no horizontal space. If you use a side-
caption in a wrapped float from, say, the wrapfig package, make sure that the sidecaption
gets placed where it won't be overlaid by the main text.

10.11 How LATEX MAKES CAPTIONS

This section provides an overview of how LaTeX creates captions and gives some examples
of how to change the captioning style directly. The section need not be looked at more than
once unless you like reading LaTeX code or you want to make changes to LaTeX'’s style of
captioning not supported by the class.

The LaTeX kernel provides tools to help in the definition of captions, but it is the par-
ticular class that decides on their format.

| \caption [{short)1{({long)} ‘
The kernel (in 1tfloat.dtx) defines the caption command via

\def\caption{%
\refstepcounter\@captype \@dblarg{\@caption\@captype}}

| \@captype \

\@captype is defined by the code that creates a new float environment and is set to the
environment’s name (see the code for \@xfloat in 1tfloat.dtx). For a figure environ-
ment, there is an equivalent to

\def\Qcaptype{figure}

| \@caption{(type)} [(short)]{(long)}

The kernel also provides the \@caption macro as:

206

10.11. How LaTeX makes captions

\long\def\@caption#1 [#2]#3{\par
\addcontentsline{\csname ext@#1\endcsname}{#1}/ <-
{\protect\numberline{\csname the#1\endcsname},
{\ignorespaces #2}}
\begingroup
\@parboxrestore
\if@minipage
\@setminipage
\fi
\normalsize
\@makecaption{\csname fnum@#1\endcsnamel, <-
{\ignorespaces #3}\par
\endgroup}

where (type) is the name of the environment in which the caption will be used. Putting
these three commands together results in the user’s view of the caption command as
\caption [(short)]1{(long)}.

It is the responsibilty of the class (or package) which defines floats to provide defini-
tions for \ext@type, \fnum@type and \@makecaption which appear in the definition of
\@caption (in the lines marked <- above).

[\extOtype \

This macro holds the name of the extension for a ‘List of...” file. For example for the
figure float environment there is the definition equivalent to

\newcommand{\ext@figure}{lof}

| \fnum@type \

This macro is responsible for typesetting the caption number. For example, for the figure
environment there is the definition equivalent to

\newcommand{\fnum@f igure}{\figurename~\thefigure}

| \@makecaption{(number)}{{text)} \

The \@makecaption macro, where (number) is a string such as “Table 5.3" and (text) is the
caption text, performs the typesetting of the caption, and is defined in the standard classes
(in classes.dtx) as the equivalent of:

\newcommand{\@makecaption} [2]{

\vskip\abovecaptionskip <-1
\sbox\@tempboxa{#1: #2} <=2
\ifdim \wd\@tempboxa >\hsize

#1: #2\par <- 3
\else

\global \@minipagefalse
\hb@xt@\hsize{\hfil\box\@tempboxa\hfil}
\fi
\vskip\belowcaptionskip} <-4

| \abovecaptionskip \belowcaptionskip \

207

10. FLOATS AND CAPTIONS

A THOUSAND WORDS...

FIGURE 10.20: A picture is worth a thousand words

Vertical space is added before and after a caption (lines marked 1 and 4 in the
code for \@makecaption above) and the amount of space is given by the lengths
\abovecaptionskip and \belowcaptionskip. The standard classes set these to 10pt
and Opt respectively. If you want to change the space before or after a caption, use
\setlength to change the values. In figures, the caption is usually placed below the
illustration. The actual space between the bottom of the illustration and the baseline
of the first line of the caption is the \abovecaptionskip plus the \parskip plus the
\baselineskip. If the illustration is in a center environment then additional space will
be added by the \end{center}; it is usually better to use the \centering command
rather than the center environment.

The actual typesetting of a caption is effectively performed by the code in lines marked
2 and 3 in the code for \@makecaption; note that these are where the colon that is typeset
after the number is specified. If you want to make complex changes to the default caption-
ing style you may have to create your own version of \@caption using \renewcommand.
On the other hand, many such changes can be achieved by changing the definition of the
the appropriate \fnum@type command(s). For example, to make the figure name and
number bold:

\renewcommand{\fnum@figure}{\textbf{\figurename~\thefigurel}}

REMEMBER: If you are doing anything involving commands that include the @ char-
acter, and it’s not in a class or package file, you have to do it within a \makeatletter
and \makeatother pairing (see §E.4). So, if you modify the \fnum@figure command
anywhere in your document it has to be done as:

\makeatletter
\renewcommand{\fnum@figure}{...... }
\makeatother

As an example, Figure 10.20 was created by the following code:

\makeatletter
\renewcommand{\fnum@figure}{\textsc{\figurename~\thefigurel}}
\makeatother

\begin{figure}

\centering

A THOUSAND WORDS\ldots

\caption{A picture is worth a thousand words}\label{fig:sc}
\end{figure}

As another example, suppose that you needed to typeset the \figurename and its
number in a bold font, replace the colon that normally appears after the number by a long
dash, and typeset the actual title text in a sans-serif font, as is illustrated by the caption for
Figure 10.21. The following code does this.

208

10.12. Footnotes in captions

ANOTHER THOUSAND WORDS. ..
Figure 10.21 — A different kind of figure caption

\makeatletter
\renewcommand{\fnum@figure} [1] {\textbf{\figurename~\thefigure}
- \sffamily}
\makeatother
\begin{figure}
\centering

ANOTHER THOUSAND WORDS\ldots
\caption{A different kind of figure caption}\label{fig:sf}
\end{figure}

Perhaps a little description of how this works is in order. Doing a little bit of TeX’s macro
processing by hand, the typesetting lines in \@makecaption (lines 2 and 3) get instantiated
like:

\fnum@figure{\figurename~\thefigure}: text

Redefining \fnum@figure to take one argument and then not using the value of the argu-
ment essentially gobbles up the colon. Using

\textbf{\figurename~\thefigure}

in the definition causes \figurename and the number to be typeset in a bold font. After
this comes the long dash. Finally, putting \sffamily at the end of the redefinition causes
any following text (i.e., the actual title) to be typeset using the sans-serif font.

If you do modify \@makecaption, then spaces in the definition may be important;
also you must use the comment (%) character in the same places as I have done above.
Hopefully, though, the class provides the tools that you need to make most, if not all, of
any likely caption styles.

10.12 FOOTNOTES IN CAPTIONS

If you want to have a caption with a footnote, think long and hard as to whether this
is really essential. It is not normally considered to be good typographic practice, and to
rub the point in LaTeX does not make it necessarily easy to do. However, if you (or your
publisher) insists, read on.

If it is present, the optional argument to \caption is put into the ‘List of...” as ap-
propriate. If the argument is not present, then the text of the required argument is put
into the ‘List of...’. In the first case, the optional argument is moving, and in the second
case the required argument is moving. The \footnote command is fragile and must be
\protected (i.e.,, \protect\footnote{})ifitis used in a moving argument. If you don’t
want the footnote to appear in the ‘List of...”, use a footnoteless optional argument and a
footnoted required argument.

You will probably be surprised if you just do, for example:

209

10. FLOATS AND CAPTIONS

\begin{figure}

\caption[For LoF]{For figure\footnote{The footnote}}
\end{figure}

because (a) the footnote number may be greater than you thought, and (b) the footnote text
has vanished. This latter is because LaTeX won't typeset footnotes from a float. To get an
actual footnote within the float you have to use a minipage, like:

\begin{figure}
\begin{minipage}{\linewidth}

\caption[For LoF]{For figure\footnote{The footnote}}
\end{minipage}
\end{figure}

If you are using the standard classes you may now find that you get two footnotes for the
price of one. Fortunately this will not occur with this class, nor will an unexpected increase
of the footnote number.

When using a minipage as above, the footnote text is typeset at the bottom of the mini-
page (i.e., within the float). If you want the footnote text typeset at the bottom of the page,
then you have to use the \footnotemark and \footnotetext commands like:

\begin{figure}

\caption[For LoF]{For figure\footnotemark}
\end{figure}
\footnotetext{The footnote}

This will typeset the argument of the \footnotetext command at the bottom of the page
where you called the command. Of course, the figure might have floated to a later page,
and then it's a matter of some manual fiddling to get everything on the same page, and
possibly to get the footnote marks to match correctly with the footnote text.

At this point, you are on your own.

210

Eleven

Rows and columns

The class provides extensions to the standard array and tabular environments. These
are based partly on a merging of the array [?], dcolumn [?], delarray [?], tabularx [?], and
booktabs [?] packages. Much of the material in this chapter strongly reflects the documen-
tation of these packages.

Note. As of September 2018: The array, delarray, tabularx and dcolumn packages are no longer
embedded into the class, but rather being autoloaded from the BTEX installation.! As the embededed
versions were just carbon copies,> we get the same result but just loading the packages, with less
maintenance. Plus these packages are part of the BKTgX core packages and thus is available in all
HTEX installations.

We have kept the documentation we had written for the manual (and updated it slightly), but
refer to [?], [?], [?] and [?] for the 100% up to date documentation.

As of Summer 2023: The booktabs package is now loaded instead of embedded. The code was
an exact copy.

Additionally, new kinds of tabular environments are also provided.

11.1 GENERAL

\ [\begin{array} [(pos)]{(preamble)} rows \end{array} \]
\begin{tabular} [(pos)]{(preamble)} rows \end{tabular}
\begin{tabular*}{(width)} [(pos)]{(preamble)} rows \end{tabularx*}
\begin{tabularx}{(width)} [{(pos)]{(preamble)} rows \end{tabularx}

The array and tabular environments are traditional and the others are extensions. The
array is for typesetting math and has to be within a math environment of some kind. The
tabular series are for typesetting ordinary text.

The optional (pos) argument can be one of t, ¢, or b (the default is c), and controls
the vertical position of the array or tabular; either the top or the center, or the bottom
is aligned with the baseline. Each row consists of elements separated by &, and finished
with \\. There may be as many rows as desired. The number and style of the columns
is specified by the (preamble). The width of each column is wide enough to contain its
longest entry and the overall width of the array or tabular is sufficient to contain all
the columns. However, the tabular* and tabularx environments provide more control
over the width through their (width) argument.

1 As the embedded versions were more or less carbon copies, it makes much more sense to let the IXTEX-team
maintain them, than us having to replace the embedded copy each time they are updated or bug fixed.
2With edited error messages.

211

11. ROWS AND COLUMNS

Table 11.1: The array and tabular preamble options.

1
c
r

p{(width)}
m{ (width)}

b{(width)}
>{(decl)}
<{(decl)}

|

@{(decl)}
H{(decl)}

*x{(num)}{(opts)}
w{(align) H(width) }

W{ (align) }{ (width)}

Left adjusted column.

Centered adjusted column.

Right adjusted column.

Equivalent to \parbox [t] {(width)}.

Defines a column of width (width). Every entry will be
centered in proportion to the rest of the line. It is some-
what like \parbox{(width)}.

Coincides with \parbox [b] {({width)}.

Can be used before an 1, r, ¢, p, m or a b option. It inserts
(decl) directly in front of the entry of the column.

Can be used afteran 1, r, ¢, p{..}, m{..} ora b{..}
option. It inserts (decl) right after the entry of the column.
Inserts a vertical line. The distance between two columns
will be enlarged by the width of the line.

Suppresses inter-column space and inserts (decl) instead.
Can be used anywhere and corresponds with the | option.
The difference is that (decl) is inserted instead of a vertical
line, so this option doesn’t suppress the normally inserted
space between columns in contrast to @{. . . }.

Equivalent to (num) copies of (opts)

Here (align) is one of 1, c or r. The construction
corresponds to every cell in the column being formated as
\makebox [(width)] [{align)]{(cell)}. It will silently
overprint if the contents are wider than (width).

Similar to w, but issues an overfull warning if the contents
is too wide.

D{(ssep) }{(osep)}{(places)} Column entries aligned on a ‘decimal point’

11.2 THE PREAMBLE

You use the (preamble) argument to the array and tabular environments to specify the num-
ber of columns and how you want column entries to appear. The preamble consists of a
sequence of options, which are listed in Table 11.1.

Examples of the options include:

e A flush left column with bold font can be specified with >{\bfseries}1.

\begin{center}

\begin{tabular}{>{\large}c >{\large\bfseries}l >{\large\itshapel}c}
\toprule

A & B & C\\

100 & 10 & 1 \\ \bottomrule

\end{tabular}
\end{center}

212

11.2. The preamble

A B C
100 10 I

* In columns which have been generated with p, m or b, the default value of
\parindent is Opt.

\begin{center}
\begin{tabular}{m{1lcm}m{icm}m{icm}} \toprule
111111111111¢&

22222222 &
3333 \\ \bottomrule
\end{tabular}
\end{center}
1111
1111 2522 3333
1111

The \parindent for a particular column can be changed with, for example

>{\setlength{\parindent}{1icm}}p

\begin{center}

\begin{tabular}{>{\setlength{\parindent}{5mm}}p{2cm} p{2cm}} \toprule
12345678901234567890¢&
1234567890123456789 0 \\ \bottomrule

\end{tabular}

\end{center}

123456 12345678
78901234 90123456
567890 7890

* The specification >{$}c<{$} generates a column in math mode in a tabular envi-
ronment. When used in an array environment the column is in LR mode (because
the additional $’s cancel the existing $’s).

* Using c!{\hspace{1cm}}c you get space between two columns which is enlarged
by one centimeter, while c@\hspace{1cm}}c gives you exactly one centimeter space
between two columns.

* Elsewhere reasons are given why you should not use vertical lines (e.g., the | op-
tion) in tables. Any examples that use vertical lines are for illustrative purposes only
where it is advantageous to denote column boundaries, for example to show differ-
ent spacing effects.

213

11. ROWS AND COLUMNS

11.2.1 D column specifiers

Recommended alternative

As an alternative to the D column (through using the dcolumn package), you can use the
siunitx package which have the added bonus of many more configuration and formatting
features. See [?] for details.

In financial tables dealing with pounds and pence or dollars and cents, column entries
should be aligned on the separator between the numbers. The D column specifier is pro-
vided for columns which are to be aligned on a ‘decimal point’. The specifier takes three
arguments.

| D{(ssep) }{{osep) H (places)} \

(ssep) is the single character which is used as the separator in the source . tex file. Thus it

‘7

will usually be *.” or *,".

(osep) is the separator in the output, this may be the same as the first argument, but may be
any math-mode expression, such as \cdot. A D column always uses math mode for
the digits as well as the separator.

(places) should be the maximum number of decimal places in the column (but see below
for more on this). If this is negative, any number of decimal places can be used in
the column, and all entries will be centred on (the leading edge of) the separator.
Note that this can cause a column to be too wide; for instance, compare the first two
columns in the example below.

Here are some example specifications which, for convenience, employ the
\newcolumntype macro described later.

\newcolumntype{d} [11{D{.}{\cdot}{#1}}

This defines d to be a column specifier taking a single argument specifying the number of
decimal places, and the . tex file should use “.” as the separator, with \cdot (-) being used
in the output.

\newcolumntype{.}{D{.}{.}}{-1}}
The result of this is that “.” specifies a column of entries to be centered on the ‘..
\newcolumntype{, }{D{, }{, }{2}2}

And the result of this is that “,” specifies a column of entries with at most two decimal
places aftera ’,".
The following table is typeset from this code:

\begin{center}
\begin{tabular}{ld{-1}I1d{2}|.|, |}
1.2 & 1.2 &1.2 &1,2 \\
1.23 & 1.23 &12.5 &300,2 \\
1121.2& 1121.2%861.20 &674,29 \\

184 & 184 &10 469 \\
.4 & .4 & &,4 \\
& &.4 &

214

11.2. The preamble

\end{tabular}
\end{center}
1.2 1-2 1.2 1,2
1-23 1-23 12.5 300,2
1121-2 1121-2 861.20 | 674,29
184 184 10 69
-4 -4 4
4

Note that the first column, which had a negative (places) argument is wider than the
second column, so that the decimal point appears in the middle of the column.

The third (places) argument may specify both the number of digits to the left and to
the right of the decimal place. The third column in the next table below is set with
D{.}{.}{5.1} and in the second table, D{.}{.}{1.1}, to specify ‘five places to the left
and one to the right” and ‘one place to the left and one to the right’ respectively. (You may
use ‘,” or other characters, not necessarily *.’ in this argument.) The column of figures is
then positioned such that a number with the specified numbers of digits is centred in the
column.

Be careful if you have table headings inserted, say, with

\multicolumn{1}{c}{...}

to over-ride the D column type, as the overall result may not look quite as good as you
might expect. In the next pair of tabulars the first column is set with

D{.}{. H{-1}
to produce a column centered on the ‘., and the second column is set with

D{.}{.}H{1}

to produce a right aligned column.

Source for Example 11.1

\begin{center}\small
\begin{tabular}[t]{|D..{-1}I|D..{1}I|D..{5.1}|3}
\multicolumn{1}{|c|}{head} &
\multicolumn{1}{c|}{head} &
\multicolumn{1}{c|}{head} \\ [3pt]

1 & 2 & 3 A\
1.2 & 1.2 & 1.2 \\
11212.2 & 11212.2 & 11212.2 \\
.4 & .4 & .4
\end{tabular}

\hfill

\begin{tabular}[t]{|D..{-1}ID..{1}|D..{1.1}|}
\multicolumn{1}{|c|}{wide heading} &
\multicolumn{1}{c|}{wide heading} &

215

11. ROWS AND COLUMNS

Typeset Example 11.1: Tabular with narrow and wide headings

head head head wide heading | wide heading | wide heading
1 2 3 1 2 3
1.2 1.2 1.2 1.2 1.2 1.2
11212.2 11212.2 | 11212.2 4 4 4
4 4 4

\multicolumn{1}{c|}{wide heading} \\[3pt]

1 & 2 & 3 \\
1.2 & 1.2 & 1.2 \\
.4 & .4 & .4
\end{tabular}

\end{center}

In both of these tables the first column is set with D{.}{.}{-1} to produce a column
centered on the “.’, and the second column is set with D{.}{.}{1} to produce a right
aligned column.

The centered (first) column produces columns that are wider than necessary to fit in
the numbers under a heading as it has to ensure that the decimal point is centered. The
right aligned (second) column does not have this drawback, but under a wide heading a
column of small right aligned figures is somewhat disconcerting.

The notation for the (places) argument also enables columns that are centred on the
mid-point of the separator, rather than its leading edge; for example

D{+}{\,\pm\, }{3,3%}

will give a symmetric layout of up to three digits on either side of a & sign.

11.2.2 Defining new column specifiers

You can easily type
>{(some declarations) }{ c}<{(some more declarations)}
when you have a one-off column in a table, but it gets tedious if you often use columns of
this form. The \newcolumntype lets you define a new column option like, say
\newcolumntype{x}{>{(some declarations)}{c}<{(some more declarations)}*
and you can then use the x column specifier in the preamble wherever you want a column
of this kind.

[\newcolumntype{(char)} [(nargs)1{(spec)} \

The (char) argument is the character that identifies the option and (spec) is its specifica-
tion in terms of the regular preamble options. The \newcolumntype command is similar
to \newcommand — (spec) itself can take arguments with the optional (nargs) argument
declaring their number.

For example, it is commonly required to have both math-mode and text columns in the
same alignment. Defining:

216

11.2. The preamble

\newcolumntype{CH{>{$}c<{$}}
\newcolumntype{L}I{>{$}1<{$}2}
\newcolumntype{RIH>{$}Ir<{$}}

Then C can be used to get centred text in an array, or centred math-mode in a tabular.
Similarly L and R are for left- and right-aligned columns.

The (spec) in a \newcolumntype command may refer to any of the primitive col-
umn specifiers (see Table 11.1 on Table 11.1), or to any new letters defined in other
\newcolumntype commands. There is also the collcell package, that can pick up the cell
contents and send it to a macro. We refer to the package manual for details.

| \showcols \

A list of all the currently active \newcolumntype definitions is sent to the terminal and
log file if the \showcols command is given.

11.2.3 Surprises
¢ A preamble of the form {wx*{0}{abc}yz} is treated as {wxyz?
* An incorrect positional argument, such as [Q], is treated as [t].

¢ A preamble such as {cc*{2}} with an error in a *-form will generate an error mes-
sage that is not particularly helpful.

¢ Error messages generated when parsing the column specification refer to the pream-
ble argument after it has been re-written by the \newcolumntype system, not to the
preamble entered by the user.

¢ Repeated < or > constructions are allowed. >{(decs1)}>{(decs2)} is treated the same
as >{(decs2)}{(decs1)}.
The treatment of multiple < or > declarations may seem strange. Using the obvious
ordering of >{(decs1)}{(decs2)} has the disadvantage of not allowing the settings of
a \newcolumntype defined using these declarations to be overriden.

¢ The \extracolsep command may be used in @-expressions as in standard LaTeX,
and also in !-expressions.

The use of \extracolsep is subject to the following two restrictions. There must be
at most one \extracolsep command per @, or ! expression and the command must
be directly entered into the @ expression, not as part of a macro definition. Thus

\newcommand{\ef}{\extracolsep{\fill}} ... @{\ef}
does not work. However you can use something like
\newcolumntype{e}{@{\extracolsep{\fill}}
instead.

* As noted by the LaTeX book [?], a \multicolumn, with the exception of the first
column, consists of the entry and the following inter-column material. This means that
in a tabular with the preamble [1]1[1]|1| input such as \multicolumn{2}{lc|}
in anything other than the first column is incorrect.

In the standard array/tabular implementation this error is not noticeable as a | takes
no horizontal space. But in the class the vertical lines take up their natural width and
you will see two lines if two are specified — another reason to avoid using |.

217

11. ROWS AND COLUMNS

11.3 THE ARRAY ENVIRONMENT

Mathematical arrays are usually produced using the array environment.

\ [\begin{array} [{(pos)] {(preamble)} rows \end{array} \]
\ [\begin{array} [(pos)] (left){(preamble)} (right) rows \end{array} \]
Math formula are usually centered in the columns, but a column of numbers often looks
best flush right, or aligned on some distinctive feature. In the latter case the D column
scheme is very handy.

\[\begin{array}{lcr}

a+b +c &d - e - f & 123 \\

g-h & jk & 45 \\

1 & m & 6

\end{array} \]

a+b+c d—e—f 123
g—nh Jk 45
l m 6
Arrays are often enclosed in brackets or vertical lines or brackets or other symbols
to denote math constructs like matrices. The delimeters are often large and have to be
indicated using \1eft and \right commands.
\[\left[\begin{array}{cc}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array} \right] \]

r1 T2

r3 T4
The class’s array environment is an extension of the standard environment in that it
provides a system of implicit \1eft \right pairs. If you want an array surrounded by

parentheses, you can enter:
\[\begin{array}({cc})a&b\\c&d\end{array} \]

a b
(¢)
Or, a litle more complex
\[\begin{array}({c})
\begin{arrayl}|{cc}|
x_{1} & x_{23 \\
x_{3} & x_{4}
\end{array} \\
vy \\
z
\end{array} \]

218

11.3. The array environment

1 T2
I3 X4

And you can do things like this:

\[a = {\begin{array}|{*x{20}{c}}|
x-\lambda & 1 & 0 \\
0 & x-\lambda & 1 \\
0 & & x-\lambda \\
\end{array}
{2} \]

T— A\ 1 0
0 T — A 1
0 r—A

a =

As another example, a construct equivalent to plain TeX’s \cases could be defined by:

\[f(x)=\begin{array}\{{1L}.
0 & if $x=0%\\
\sin(x)/x & otherwise
\end{array} \]

f(x){o ifr=0

sin(xz)/x otherwise

Here L denotes a column of left aligned L-R text, as described earlier. Note that as the
delimiters must always be used in pairs, the *.” must be used to denote a ‘null delimiter’.

This feature is especially useful if the [t] or [b] arguments are also used. In these
cases the result is not equivalent to surrounding the environment by \1left...\right, as
can be seen from the following example:

\begin{array}[t] ({c}) 1\\2\\3 \end{array}
\begin{array}[c] ({c}) 1\\2\\3 \end{array}
\begin{array}[b] ({c}) 1\\2\\3 \end{array}
\quad\mbox{not}\quad

\left (\begin{array}[t]l{c} 1\\2\\3 \end{array}\right)
\left (\begin{array}[c]{c} 1\\2\\3 \end{array}\right)
\left (\begin{array}[b]l{c} 1\\2\\3 \end{array}\right)

/
—_
N~ —
/
W N =
N~ —
—
W DN =
N~ —
=}
o
=
—
~
W N =
N~ —
W DN =

219

11. ROWS AND COLUMNS

Table 11.2: Demonstrating the parts of a table

Spanner

head head head head
stub subhead subhead

A a b C d

B e f g h
cut-in head

C i j k 1

D m n o p

11.4 TABLES

A table is one way of presenting a large amount of information in a limited space. Even
a simple table can presents facts that could require several wordy paragraphs — it is not
only a picture that is worth a thousand words.

A table should have at least two columns, otherwise it is really a list, and many times
has more. The leftmost column is often called the stub and it typically contains a vertical
listing of the information categories in the other columns. The columns have heads (or
headings) at the top indicating the nature of the entries in the column, although it is not
always necessary to provide a head for the stub if the heading is obvious from the table’s
caption. Column heads may include subheadings, often to specify the unit of measurement
for numeric data.

A less simple table may need two or more levels of headings, in which case decked heads
are used. A decked head consists of a spanner head and the two or more column heads it
applies to. A horizontal spanner rule is set between the spanner and column heads to show
which columns belong to the spanner.

Double decking, and certainly triple decking or more, should be avoided as it can make
it difficult following them down the table. It may be possible to use a cut-in head instead of
double decking. A cut-in head is one that cuts across the columns of the table and applies
to all the matter below it. To try and clarify, the parts of a table are shown diagrammatically
in Table 11.2.

No mention has been made of vertical rules in a table, and this is deliberate. There
should be no vertical rules in a table. Rules, if used at all, should be horizontal only, and
these should be single, not double or triple. It's not that ink is expensive, or that practically
no typesetting is done by hand any more, it is simply that the visual clutter should be
eliminated.

For example, in Table 11.3 which was produced from the code below, Table 11.3(a) is
from the LaTeX book and Table 11.3(b) is how Simon Fear [?] suggests it should be cleaned
up. Notice how both the revised code and the table are generally simpler than the originals.

\begin{table}

\centering

\caption{Two views of one table} \label{tab:twoviews}
\subtop[Before]{\label{tab:before}y,

220

11.4. Tables

Table 11.3: Two views of one table

(b) After
Item
(a) Before Animal Description Price ($)
gnats gram $13.65 Gnat per gram 13.65
each 01 each 0.01
gnu stuffed 92.50 Gnu stuffed 92.50
emu 33.33 Emu stuffed 33.33
armadillo | frozen 8.99 Armadillo frozen 8.99
\begin{tabular}{||1|1r| [} \hline
gnats & gram & \$13.65 \\ \cline{2-3}
& each & .01 \\ \hline
gnu & stuffed & 92.50 \\ \cline{1-1} \cline{3-3}
emu & & 33.33 \\ \hline
armadillo & frozen & 8.99 \\ \hline
\end{tabular}}
\hfill

\subtop [After]{\label{tab:after}’
\begin{tabular}{@{}11r@{}} \toprule
\multicolumn{2}{c}{Item} \\ \cmidrule(r){1-2}
Animal & Description & Price (\$)\\ \midrule
Gnat & per gram & 13.65 \\

& each & 0.01 \\
Gnu & stuffed & 92.50 \\
Emu & stuffed & 33.33 \\
Armadillo & frozen & 8.99 \\ \bottomrule
\end{tabular}
}
\end{table}

Columns of numbers often end with a line giving the total or result. A horizontal rule
may be drawn to separate the result from the rest but a small amount of white space may
do just as well, as in Table 11.4.

Some other points are:

¢ Put the units in the column heading (not in the body of the table).
* Always precede a decimal point by a digit; thus 0.1 not just .1.

* Do not use “ditto” signs or any other such convention to repeat a previous value. In
many circumstances a blank will serve just as well. If it won't, then repeat the value.

Not every table requires all the elements mentioned above. For instance, in Charles
Dicken’s David Copperfield (1849-1850) Mr Wilkins Micawber states:

‘Annual income twenty pounds, annual expenditure nineteen six, result hap-
iness. Annual income twenty pounds, annual expenditure twenty pounds

221

11. ROWS AND COLUMNS

Table 11.4: Micawber’s law

Income £20-0-0 £20-0-0
Expenditure £19-0-6 £20-0-6
Result happiness misery

Table 11.5: A narrow table split half and half

Relative contents of odd isotopes for heavy elements

Element Z 5y Element Z 5y
Sm 62 1.480 W 74 0.505
Gd 64 0.691 Os 76 0.811

Dy 66 0.930 Pt 78 1.160

ought and six, result misery.’
This can also be represented in tabular form? as in Table 11.4.

Long narrow tables do not look well on the page. In such cases the table could be set
half and half instead, as in Table 11.5.

11.5 FEAR’S RULES

Simon Fear disapproves of the default LaTeX table rules and wrote the booktabs pack-
age [?] to provide better horizontal rules. Like many typographers, he abhors vertical
rules. The following is taken almost verbatim from the booktabs package which as of
Summer 2023 is automatically loaded (was embedded).

In the simplest of cases a table begins with a top rule, has a single row of column
headings, then a dividing rule, and after the columns of data it is finished off with a final
rule. The top and bottom rules are normally set heavier (i.e., thicker or darker) than any
intermediate rules.

\toprule [(width)] \bottomrule [(width)] \heavyrulewidth
\midrule [{width)] \lightrulewidth
\aboverulesep \belowrulesep \doublerulesep

All the rule commands here go immediately after the closing \\ of the preceding row
(except of course \toprule, which comes right after the start of the environment). Each
rule has an optional length argument, (width), which you can use to locally change the
default width of the rule.

\toprule draws a rule (with a default width of \heavyrulewidth), and
\belowrulesep vertical space inserted below it.

\midrule draws a rule (default \lightrulewidth width) with \aboverulesep
space above it and \belowrulesep below it.

3But putting Josh Billings” (Henry Wheeler Shaw) corollary: ‘Live within your income, even if you have to
borrow to do it.” into tabular form would not work.

222

11.5. Fear’s rules

\bottomrule draws a rule with a default width of \heavyrulewidth. There is
\aboverulesep space above it and \belowrulesep space below it.

If a rule immediately follows another the space between them is \doublerulesep, but
as you are not going to use double rules you won’t be concerned about this.

\cmidrule [(width)] ({trim)) {(m-n)}
\cmidrulewidth \cmidrulekern

Spanner rules do not extend the full width of the table, and the \cmidrule is provided for
that purpose. This draws a rule, default thickness \cmidrulewidth, across columns (1)
to (n) inclusive (where (m) and (1) are column numbers, with (m) not greater than (n)).

Generally, this rule should not come to the full width of the end columns, and this is
especially the case if you have to begin a \cmidrule straight after the end of another one.
You can use the optional trimming argument commands, which are (r), (1) and (rl) or
(1r), indicated whether the right and/or left ends of the rule should be trimmed. Note
the exceptional use of parentheses instead of brackets for this optional argument.

\cmidrule draws a rule from column m to n with a default thickness of
\cmidrulewidth. Adjacent \cmidrules, for example

... \\ \cmidrule{2-3}\cmidrule{5-7}

have the same vertical alignment. It is best not to leave any space between these com-
mands. The space above and below is normally \aboverulesep and \belowrulesep.

If you are forced into having double spanner rules then you will reluctantly have to
insert the command \morecmidrules between the commands for the upper and lower
rules. For example:

... \\ \cmidrule{2-3}\cmidrule{5-7}\morecmidrules\cmidrule{2-3}

will draw double rules across columns 2 and 3. You must finish off the rules for one
row before starting the lower set of rules. There must not be any space surrounding the
\morecmidrules macro. The upper and lower rules are separated by \cmidrulesep.

| \addlinespace [(width)] \defaultaddspace \

Occasionally extra space between certain rows of a table may be helpful; for example,
before the last row if this is a total. This is simply a matter of inserting \addlinespace
after the \\ alignment marker. You can think of \addlinespace as being a white rule
of width (width). The default space is \defaultaddspace which gives rather less than
a whole line space. If another rule follows the amount of whitespace is increased by
\doublerulesep.

| \specialrule{(width)}{({abovespace)}{ (belowspace)} \

You can, but should not, generate peculiar spacing between rules by using \specialrule.
The three required arguments are the width, (width), of the rule and the spaces above
({(abovespace)) and below ((belowspace)). \specialrule ignores a preceding rule but if
there is a following one then (belowspace) will be increased by \doublerulesep.
The default dimensions are

\heavyrulewidth = 0.08em

\lightrulewidth = 0.05em

\cmidrulewidth = 0.03em

\belowrulesep = 0.65ex

223

11. ROWS AND COLUMNS

\aboverulesep = 0.4ex

\defaultaddspace = 0.5em

\cmidrulekern = 0.25em
The last of these, \cmidrulekern, is the amount by which a \cmidrule is trimmed at the
ends indicated in the () option. In the construction

\cmidrule(r){1-2}\cmidrule(1){3-4}
there is a total of 0.5em separating the two rules. Currently the only way to get special
effects is to reset \cmidrulekern as appropriate; the amount of trimming is not available
as an argument in the current implementation of \cmidrule.

An example of the commands in use was given by the code to produce Table 11.3(b) on

page 221:

\begin{tabular}{@{}11r@{}} \toprule
\multicolumn{2}{c}{Item} \\ \cmidrule(r){1-2}
Animal & Description & Price (\$)\\ \midrule
Gnat & per gram & 13.65 \\

& each & 0.01 \\
Gnu & stuffed & 92.50 \\
Emu & stuffed & 33.33 \\
Armadillo & frozen & 8.99 \\ \bottomrule
\end{tabular}

11.5.1 Fills

The rules described previously go between rows. Sometimes it may be desirable to to put
a rule or something similar within a row.

| \downbracefill \hrulefill \upbracefill \

Examples of \downbracefill, \hrulefill, and \upbracefill are illustrated in Ta-
ble 11.6, typeset from the code below. Surprisingly these are ordinary text commands, not
math mode commands.

\begin{table}

\centering

\caption{Example table with fills} \label{tab:fills}
\begin{tabular}{rrrrr}

1&2 &3 &4 &5\\

Q& & fgh & jklm & qwerty \\

v&as &x & vy & z \\

g & nnn & \multicolumn{3}{c}{\upbracefill} \\
\multicolumn{3}{c}{\downbracefill} & pq & dgh \\
k&j &t & co & ytrewg \\

1&2 &3 & \multicolumn{2}{c}{\hrulefill}
\end{tabular}

\end{table}

Here are the same fills, but this time in an array environment. are shown afterwards.
Notice the $s in the array surrounding the fills. Normally $. . . $ is used to typeset a small
amount of math mode material in the middle of text. In this case, as the array is already

224

11.5. Fear’s rules

Table 11.6: Example table with fills

1 2 3 4 5
Q fgh jklm qwerty
v as X y z
g nnn
—_— P9 dgh
k j t co ytrewq
1 2 3

in math mode the $. . .$ are used to typeset a small amount of text material within math
mode.

\begin{displaymath}

\begin{array}t{rrrrr}

1&2 &3 &4 & 5 \\

Q& & fgh & jklm & qwerty \\

v&as &x & y & z \\

g & nnn & \multicolumn{3}{c}{\upbracefill} \\
\multicolumn{3}{c}{\downbracefill} & pq & dgh \\
k& j &t & co & ytrewg \\

1&2 &3 & \multicolumn{2}{c}{\hrulefill}

\end{array}
\end{displaymath}
1 2 3 4 5
Q fgh jkim quwerty
v as x Y z
g nnn
—_— g dgh

k J t co ytrewq

—
[\
w

You can define your own ‘fill’. For example:

\newcommand*{\upbracketfill}{%
\vrule height 4pt depth Opt\hrulefilly
\vrule height 4pt depth Opt}

is a fill that has the appearance of a (horizontal) bracket. It can be used like this:

\begin{displaymath}

\begin{array}{cccc}

1&2&3&4\\

a & \multicolumn{2}{c}{\upbracketfill} & d \\
A&B&C&D

\end{array}

\end{displaymath}

225

11. ROWS AND COLUMNS

Figure 11.1: Example of a regular tabular

Multicolumn entry! | THREE | FOUR

one | The width of three Column four
this column is will act in the
fixed (5.5pc). same way as

column two,
with the same
width.

N o=
@

|
(ST

11.6 TABULAR ENVIRONMENTS

\begin{tabular} [(pos)] {(format)} rows \end{tabular}
\begin{tabular*}{(width)} [(pos)]{{format)} rows \end{tabularx}
\begin{tabularx}{(width)} [(pos)]{(format)} rows \end{tabularx}

A table created using the tabular environment comes out as wide as it has to be to ac-
comodate the entries. On the other hand, both the tabular* and tabularx environments
let you specify the overall width of the table via the additional (width) atrgument.

The tabular* environment makes any necessary adjustment by altering the intercol-
umn spaces while the tabularx environment alters the column widths. Those columns
that can be adjusted are noted by using the letter X as the column specifier in the (format).
Once the correct column widths have been calculated the X columns are converted to p
columns.

11.6.1 Examples
The following code is used for a regular tabular.

\begin{figure}

\centering

\caption{Example of a regular \texttt{tabular}}
\begin{tabular}{|c|p{5.5pc}Iclp{6.5pc}|} \hline
\multicolumn{2}{|c|}{Multicolumn entry!} & THREE & FOUR \\ \hline
one &

\raggedright\arraybackslash The width of this column is fixed
(5.5pc) . & three &

\raggedright\arraybackslash Column four will act in the same
way as column two, with the same width.\\

\hline

\end{tabular}

\end{figure}

226

11.6. Tabular environments

Figure 11.2: Example tabularx and tabular* with widths of 250pt
\begin{tabularx}{250pt}{|cl|Xlc|X|}

Multicolumn entry! THREE | FOUR
one | The width of this | three | Column four
column depends will act in the
on the width of same way as
the table.* column two,
with the same
width.

\begin{tabular*}{250pt}{|c|p{5.5pc}|clp{5.5pc}|}
Multicolumn entry! | THREE | FOUR

one | The width of three Column four
this column is will act in the
fixed (5.5pc). same way as

column two,
with the same
width.

The following examples use virtually the same contents, the major differences are the
specifications of the environment.

Note that the horizontal rules extend beyond the last column. There are no X columns
and the total width required to set the tabular* is less than the 250pt specified for the
width.

Compare the previous narrow tabular* with the next one which is set with

\begin{tabular*}{300pt}’%

{1e{\extracolsep{\fill}}c|p{5.5pc}|c|p{5.5pc} |}

The main differences between the tabularx and tabular* environments are:

tabularx modifies the widths of the columns, whereas tabular* modifies the
widths of the intercolumn spaces.

tabular and tabular* environments may be nested with no restriction, however
if one tabularx environment occurs inside another, then the inner one must be en-
closed by { }.

The body of the tabularx environment is in fact the argument to a command, and
so certain constructions which are not allowed in command arguments (like \verb)
may not be used.’

tabular* uses a primitive capability of TeX to modify the inter column space of
an alignment. tabularx has to set the table several times as it searches for the best
column widths, and is therefore much slower. Also the fact that the body is expanded
several times may break certain TeX constructs.

| \tracingtabularx ‘

5Actually, \verb and \verb* may be used, but they may treat spaces incorrectly, and the argument can not
contain an unmatched { or }, or a % character.

227

11. ROWS AND COLUMNS

Figure 11.3: Example tabularx and tabular* with widths of 300pt
\begin{tabularx}{300pt}{lc|X|c|X|}

Multicolumn entry! THREE | FOUR
one | The width of this three Column four will act
column depends on in the same way as
the width of the table. column two, with the
same width.

\begin{tabular*}{300pt}Y%
{l1e{\extracolsep{\fill}}c|p{5.5pc}|c|p{5.5pc}|}

Multicolumn entry! THREE FOUR
one The width of three Column four
this column’s will act in the
text is fixed same way as
(5.5p0). column two,
with the same
width.

Following the \tracingtabularx declaration all later tabularx environments will print
information about column widths as they repeatedly re-set the tables to find the correct
widths.

By default the X specification is turned into p{(some value)}. Such narrow columns of-
ten require a special format, which can be achieved by using the > syntax. For example,
>{\small}X. Another format which is useful in narrow columns is raggedright, how-
ever LaTeX’s \raggedright macro redefines \\ in a way which conflicts with its use in
tabular or array environments.

| \arraybackslash \

For this reason the command \arraybackslash is provided; this may be used after a
\raggedright, \raggedleft or \centering declaration. Thus a tabularx format may
include

>{\raggedright\arraybackslash}X

These format specifications may of course be saved using the command,
\newcolumntype. After specifying, say,

\newcolumntype{Y}{>{\small\raggedright\arraybackslash}X}

then Y could be used in the tabularx format argument.

| \tabularxcolumn \

The X columns are set using the p column, which corresponds to \parbox[t]. You may
want them set using, say, the m column, which corresponds to \parbox[c]. It is not
possible to change the column type using the > syntax, so another system is provided.
\tabularxcolumn should be defined to be a macro with one argument, which expands
to the tabular format specification that you want to correspond to X. The argument will
be replaced by the calculated width of a column.

The default definition is

228

11.6. Tabular environments

\newcommand{\tabularxcolumn} [1] {p{#13}}
This may be changed, for instance
\renewcommand{\tabularxcolumn} [1]{>{\small}m{#1}}

so that X columns will be typeset as m columns using the \small font.
Normally all X columns in a single table are set to the same width, however it is possible
to make tabularx set them to different widths. A format argument of

{>{\hsize=.5\hsize}X>{\hsize=1.5\hsize}X}

specifies two columns, where the second will be three times as wide as the first. If you
think you need to do things like this try and redesign your table. However, if you must
you should follow these two rules.
* Make sure that the sum of the widths of all the X columns is unchanged. (In the
above example, the new widths still add up to twice the default width, the same as
two standard X columns.)

* Do not use \multicolumn entries which cross any X column.

tabularx will not set X columns to a negative width. If the widths of the ‘normal’
columns of the table already total more than the requested total width you will get the
warning ‘X columns too narrow (table too wide)’. The X columns will be set to a
width of lem and so the table itself will be wider than the requested total width given in
the argument to the environment.

The standard \verb macro does not work inside a tabularx, just as it does not work
in the argument to any macro.

| \TX@verb |
The ‘poor man’s \verb’ (and \verbx) defined here is based on page 382 of the TeXbook. As
explained there, doing verbatim this way means that spaces are not treated correctly, and

so \verb* may well be useless. The mechanism is quite general, and any macro which
wants to allow a form of \verb to be used within its argument may

\let\verb=\TX@verb

It must ensure that the real definition is restored afterwards.
This version of \verb and \verb* are subject to the following restictions:

1. Spaces in the argument are not read verbatim, but may be skipped according to TeX’s
usual rules.

2. Spaces will be added to the output after control words, even if they were not present
in the input.

3. Unless the argument is a single space, any trailing space, whether in the original
argument, or added as in (2), will be omitted.

4. The argument must not end with \, so \verb|\| is not allowed, however, because
of (3), \verb|\ | produces \.

5. The argument must be balanced with respect to { and }. So \verb|{| is not allowed.

6. A comment character like % will not appear verbatim. It will act as usual, comment-
ing out the rest of the input line!

7. The combinations 7 and ! ¢ will appear as ; and j if the Computer Typewriter font
is being used.

229

11. ROWS AND COLUMNS

11.7 SPACES AND RULES

11.7.1 Spacing

Sometimes tabular rows appear vertically challenged.

| \arraystretch \

The macro \arraystretch controls the spacing between rows. The normal space is mul-
tiplied by the value of \arraystretch, whose default definition is

\newcommand{\arraystretch}{1.0}

If this is changed to 1.25, for example, the row spacing is increased by 25%.

\extrarowheight
! g |

If the length \extrarowheight is positive, its value is added to the normal height of every
row of the array or table, while the depth will remain the same. This is important for tables
with horizontal lines because those lines normally touch the capital letters. For example

\begin{table}

\centering

\caption{The array and tabular format options.l}/

\label{tab:tabpream}
\setlength{\extrarowheight}{1pt}

\begin{tabular}{cp{9cm}} \toprule

was used for Table 11.1.
[\arraycolsep \tabcolsep \

The length \arraycolsep is half the width of the horizontal space between columns in
an array environment and similarly the length \tabcolsep is half the space between
columns in an tabular or tabular* environment.

| \arrayrulewidth \doublerulesep \

The length \arrayrulewidth is the width of the line created by a | in the format, or
by an \hline, \cline or \vline command. The length \doublerulesep is the space
between lines created by two successive | options in the format or by successive \hline
commands.

11.7.2 Special variations on horizontal lines

The family of tabular environments allows vertical positioning with respect to the base-
line of the text in which the environment appears. By default the environment appears
centered, but this can be changed to align with the first or last line in the environment by
supplying a t or b value to the optional position argument. However, this does not work
when the first or last element in the environment is a \hline command — in that case the
environment is aligned at the horizontal rule.

Here is an example:

230

11.8. Free tabulars

Tables with no versus Tables
hline \begin{tabular}[t]{1}
commands with no\\ hline\\ commands
tables used. \end{tabular} versus tables
with some \begin{tabular}[t]1{|1]}
hline \hline
commands with some\\ hline\\ commands\\
\hline

\end{tabular} used.

\firsthline \lasthline
\extratabsurround

Using \firsthline and \lasthline will cure the problem, and the tables will align
properly as long as their first or last line does not contain extremely large objects.

Tables with no versus Tables
line \begin{tabular}[t]{1}
commands with no\\ line\\ commands
tables [with some |used. \end{tabular} versus tables
line \begin{tabular}[t]1{[1]}
commands \firsthline
with some\\ line\\ commands\\
\lasthline

\end{tabular} used.

The implementation of these two commands contains an extra dimension, which is
called \extratabsurround, to add some additional space at the top and the bottom of
such an environment. This is useful if such tables are nested.

11.7.3 Handling of rules
There are two possible approaches to the handling of horizontal and vertical rules in tables:
1. rules can be placed into the available space without enlarging the table, or

2. rules can be placed between columns or rows thereby enlarging the table.

The class implements the second possibility while the default implementation in the LaTeX
kernel implements the first concept.

With standard LaTeX adding rules to a table will not affect the width or height of the
table (unless double rules are used), e.g., changing a format from 111 to 1/1|1 does not
affect the document other than adding rules to the table. In contrast, with the class a table
that just fits the \textwidth might now produce an overfull box. (But you shouldn’t have
vertical rules in the first place.)

11.8 FREE TABULARS

All the tabular environments described so far put the table into a box, which LaTeX treats
like a large complex character, and characters are not broken across pages. If you have a

231

11. ROWS AND COLUMNS

long table that runs off the bottom of the page you can turn to, say, the longtable [?] or
xtab [?] packages which will automatically break tables across page boundaries. These
have various bells and whistles, such as automatically putting a caption at the top of each
page, repeating the column heads, and so forth.

11.8.1 Continuous tabulars

Recommended alternative

The construction below is not recommended for data tables that span across a page break
as it has no feature to repeat the headers. In that case a better solution would be the
longtable package. There are also other similar newer packages.

| \begin{ctabular} [{pos)]{{format)} rows \end{ctabular} \

The ctabular environment is similar to tabular, but with a couple of differences, the
main one being that the table will merrily continue across page breaks. The (format) argu-
ment is the same as for the previous array and tabular environments, but the optional
(pos) argument controls the horizontal position of the table, not the vertical. The possible
argument value is one of the following characters:

| left justified,

¢ centered, or

r right justified;
the defaultis c.

\begin{ctabular}{lcr} \toprule
LEFT & CENTER & RIGHT \\ \midrule
1&cé&r\\

1&cé&r\\

1&cé&r\\

1 & c&r \\ \bottomrule
\end{ctabular}

LEFT CENTER RIGHT
1

N N 00N
T]

1
1
1

An example use is for setting two texts in parallel, for instance a poem and it’s transla-
tion, without having to be concerned about page breaks.

Je suis Frangoys, dont il me pois, I am Francois, which is unfortunate,
Né de Paris empres Pointoise, born in Paris near Pointoise,

Et de la corde d’une toise and with a six-foot stretch of rope,
Sgaura mon col que mon cul poise. my neck will know my arse’s weight.

Francgois Villon, 1431-1463?

232

11.8. Free tabulars

Table 11.7: Example automatic row ordered table

one two three four five
six seven eight nine ten
eleven twelve thirteen fourteen

The ctabular environment will probably not be used within a table environment
(which defeats the possibility of the table crossing page boundaries). To caption a
ctabular you can define a fixed caption. For example:

\newfixedcaption{\freetabcaption}{table}

And then \freetabcaption can be used like the normal \caption within a table float.

11.8.2 Automatic tabulars

A tabular format may be used just to list things, for example the names of the members of
a particular organisation, or the names of LaTeX environments.

Especially when drafting a document, or when the number of entries is likely to change,
it is convenient to be able to tabulate a list of items without having to explicitly mark the
end of each row.

| \autorows [(width)]{(pos)}{ (num)}{(style) }{ (entries)} \

The \autorows macro lists the (entries) in rows; that is, the entries are typeset left to right
and top to bottom. The (num) argument is the number of columns. The (entries) argument
is a comma-separated list of the names to be tabulated; there must be no comma after the
last of the names before the closing brace. Table 11.7 was set by \autorows using:

\begin{figure}
\freetabcaption{Example automatic row ordered table}
\label{tab:autorows}
\autorows{c}{5}{c}{one, two, three, four, five,
six, seven, eight, nine, ten,
eleven, twelve, thirteen, fourteen }
\end{figure}

The (pos) argument controls the horizontal position of the tabular and the (style) argu-
ment specifies the location of the entries in the columns; each column is treated identically.
The value of a (pos) or (style) argument is one of the following characters:

| left justified,

c centered, or

r right justified.

Each column is normally the same width, which is large enough to accomodate the
widest entry in the list. A positive (width) (e.g., {0.8\textwidth}), defines the overall
width of the table, and the column width is calculated by dividing (width) by the number
of columns. Any negative value for the (width) width lets each column be wide enough for
the widest entry in that column; the column width is no longer a constant.

The examples in Figure 11.4 illustrate the effect of the (width) argument (the default
value is Opt). The principal elements of the code for the Figure are:

233

11. ROWS AND COLUMNS

(width) = -1pt
one two three four five
six seven eight nine ten
eleven twelve thirteen fourteen
(width) = Opt (the default)

one two three four five
six seven eight nine ten
eleven twelve thirteen fourteen
(width) = 0.9\textwidth
one two three four five
six seven eight nine ten
eleven twelve thirteen fourteen

Figure 11.4: Changing the width of a row ordered table

\begin{figure}

\autorows [-1pt]{c}{6}{c}{one, two, three, four, five,
six, seven, eight, nine, ten,
eleven, twelve, thirteen, fourteen }

\autorows [Opt]{c}{5}{c}{one, two, three,
. fourteen }

\autorows [0.9\textwidth] {c}{5}{c}{one, two, three,
. fourteen }
\caption{Changing the width of a row ordered table}
\label{fig:arw}
\end{figure}

| \autocols [(width)]1{(pos)H{ (num)}{(style) }{(entries)}

|

The \autocols macro lists its (entries) in columns, proceeding top to bottom and left to
right. The arguments, are the same as for \autorows, except that a negative (width) is
treated as if it were zero. The column width is always constant throughout the table and
is normally sufficient for the widest entry. A positive or zero (width) has the same effect as

for \autorows.

If you need to include a comma within one of the entries in the list for either \autorows

or \autocols you have to use a macro. For instance:

\newcommand*{\commal}{, }

The examples in Figure 11.5, from the following code elements, illustrate these points.

\begin{figure}
\autocols{c}{5}{c}{one\comma{} two, three, four, five,

six, seven, eight, nine, ten,
eleven, twelve, thirteen, fourteen }

234

11.8. Free tabulars

(width) = Opt (the default)

one, two five eight eleven thirteen
three six nine twelve fourteen
four seven ten
(width) = 0.9\textwidth
one, two five eight eleven thirteen
three six nine twelve fourteen
four seven ten

Figure 11.5: Changing the width of a column ordered table

\autocols[0.9\textwidth]{c}{5}{c}{one\comma{} two, three,

. fourteen }
\caption{Changing the width of a column ordered table}
\label{fig:acw}
\end{figure}

235

Twelve

Page notes

The standard classes provide the \footnote command for notes at the bottom of the page.
The class provides several styles of footnotes and you can also have several series of foot-
notes for when the material gets complicated. The normal \marginpar command puts
notes into the margin, which may float around a little if there are other \marginpars on
the page. The class additionally supplies commands for fixed marginal notes and sidebars.

12.1 FOOTNOTES

A footnote can be considered to be a special kind of float that is put at the bottom of a page.
| \footnote [(num)] {{text)} \

In the main text, the \footnote command puts a marker at the point where it is called, and
puts the (fext), preceded by the same mark, at the bottom of the page. If the optional (num)
is used then its value is used for the mark, otherwise the footnote counter is stepped and
provides the mark’s value. The \footnote command should be used in paragraph mode
where it puts the note at the bottom of the page, or in a minipage where it puts the note at
the end of the minipage. Results are likely to be peculiar if it is used anywhere else (like
in a tabular).

\footnotemark [(num)]
\footnotetext [(num)] {(text)}

You can use \footnotemark to put a marker in the main text; the value is determined
just like that for \footnote. Footnote text can be put at the bottom of the page via
\footnotetext; if the optional (num) is given it is used as the mark’s value, otherwise
the value of the footnote counter is used. It may be helpful, but completely untrue, to
think of \footnote being defined like:

\newcommand{\footnote}[1]{\footnotemark\footnotetext{#1}}
In any event, you can use a combination of \footnotemark and \footnotetext to do
footnoting where LaTeX would normally get upset.
| \footref{(label)} \

On occasions it may be desireable to make more than one reference to the text of a footnote.
This can be done by putting a \1abel in the footnote and then using \footref to refer to
the label; this prints the footnote mark. For example:

...\footnote{...values for the kerning.\label{fn:kerning}} ...

237

12. PAGE NOTES

. The footnote\footref{fn:kerning} on \pref{fn:kerning} ... \\

In this manual, the last line above prints:
| ... The footnote™ \

[\multfootsep \

In the standard classes if two or more footnotes are applied sequentially'-? then the mark-
ers in the text are just run together. The class, like the footmisc [?] and ledmac packages,
inserts a separator between the marks. In the class the macro \multfootsep is used as
the separator. Its default definition is:

\newcommand*{\multfootsep}{\normalfont,}

\feetabovefloat
\feetbelowfloat

In the standard classes, footnotes on a page that has a float at the bottom are typeset before
the float. I think that this looks peculiar. Following the \feetbelowfloat declaration
footnotes will be typeset at the bottom of the page below any bottom floats; they will also
be typeset at the bottom of \raggedbottom pages as opposed to being put just after the
bottom line of text. The standard positioning is used following the \feetabovefloat
declaration, which is the default.

12.1.1 A variety of footnotes
| \verbfootnote [(num)] {{text)} \

The macro \verbfootnote is like the normal \footnote except that its (text) agument
can contain verbatim material. For example, the next two paragraphs are typeset by this
code:

Below, footnote~\ref{fnl} is a \verb?\footnote? while
footnote~\ref{fn2} is a \verb?\verbfootnote?.

The \verb?\verbfootnote? command should
appear\footnote{There may be some problems if color is
used.\label{fn1}}

to give identical results as the normal \verb?\footnote?,

but it can include some verbatim

text\verbfootnote{The \verb?\footnote? macro, like all
other macros except for \verb?\verbfootnote?,
can not contain verbatim text in its
argument.\label{fn2}}

in the \meta{text} argument.

Below, footnote 3 is a \footnote while footnote 4 is a \verbfootnote.
The \verbfootnote command should appear® to give identical results as the normal
\footnote, but it can include some verbatim text* in the (text) argument.

10ne footnote

2Immeclia’tely followed by another

3There may be some problems if color is used.

4The \footnote macro, like all other macros except for \verbfootnote, can not contain verbatim text in
its argument.

238

12.1. Footnotes

\plainfootnotes
\twocolumnfootnotes
\threecolumnfootnotes
\paragraphfootnotes

Normally, each footnote starts a new paragraph. The class provides three other
styles, making four in all. Following the \twocolumnfootnotes declaration footnotes
will be typeset in two columns, and similarly they are typeset in three columns after
the \threecolumnfootnotes declaration. Footnotes are run together as a single para-
graph after the \paragraphfootnotes declaration. The default style is used after the
\plainfootnotes declaration.

Caveat. Following \paragraphfootnotes the footnotes should only be a single para-
graph each.

The style can be changed at any time but there may be odd effects if the change is made
in the middle of a page when there are footnotes before and after the declaration. You may
find it interesting to try changing styles in an article type document that uses \maketitle
and \thanks, and some footnotes on the page with the title:

\title{...\thanks{...}}
\author{...\thanks{...}...}

\begin{document}
\paragraphfootnotes
\maketitle
\plainfootnotes

\footfudgefiddle
| g |

Paragraphed footnotes may overflow the bottom of a page. TeX has to estimate the amount
of space that the paragraph will require once all the footnotes are assembled into it. It
then chops off the main text to leave the requisite space at the bottom of the page, fol-
lowing which it assembles and typesets the paragraph. If it underestimated the size
then the footnotes will run down the page too far. If this happens then you can change
\footfudgefiddle to make TeX be more generous in its estimation. The default is 64
and a value about 10% higher should fix most overruns.

\renewcommand*{\footfudgefiddle}{70}

You must use an integer in the redefinition as the command is going to be used in a place
where TeX expects an integer.

\newfootnoteseriesq{(series)}
\plainfootstyle{(series)}
\twocolumnfootstyle{(series)}
\threecolumnfootstyled{(series)}
\paragraphfootstyle{(series)}

If you need further series you can create you own. A new footnote series is created by
the \newfootseries macro, where (series) is an alphabetic identifier for the series. This
is most conveniently a single (upper case) letter, for example P.

239

12. PAGE NOTES

Calling, say, \newfootnoteseries{Q} creates a set of macros equivalent to those
for the normal \footnote but with the (series) appended. These include \footnoteQ,
\footnotemarkQ, \footnotetextQ and so on. These are used just like the normal
\footnote and companions.

By default, a series is set to typeset using the normal style of a paragraph per note. The
series’ style can be changed by using one of the \. . .footstyle commands.

For example, to have a ‘P’ (for paragraph) series using roman numerals as markers
which, in the main text are superscript with a closing parenthesis and at the foot are on the
baseline followed by an endash, and the text is set in italics at the normal footnote size:

\newfootnoteseries{P}

\paragraphfootstyle{P}

\renewcommand{\thefootnoteP}{\roman{footnoteP}}

\footmarkstyleP{#1--}

\renewcommand{\@makefnmarkP}{%
\hbox{\@thefnmarkP)}}

\renewcommand{\foottextfontP}{\itshape\footnotesize}

This can then be used like:

. this sentence\footnoteP{A ‘p’ footnote\label{fnpl}}
includes footnote~\footrefP{fnp}.

The \newfootnoteseries macro does not create series versions of the footnote-
related length commands, such as \footmarkwidth and \footmarksep, nor does it cre-
ate versions of \footnoterule.

At the foot of the page footnotes are grouped according to their series; all ordinary
footnotes are typeset, then all the first series footnotes (if any), then the second series, and
so on. The ordering corresponds to the order of \newfootnoteseries commands.

If you can’t specify a particular footnote style using the class facilities the footmisc
package [?] provides a range of styles. A variety of styles also comes with the ledmac
package [?] which additionally provides several classes of footnotes that can be mixed on

a page.

12.1.2 Styling

The parameters controlling the vertical spacing of footnotes are illustrated in Figure 12.1.
There is a discussion in §4.2 starting on page 66 about how to style the \thanks com-

mand; footnotes can be similarly styled.
The \footnote macro (and its relations) essentially does three things:

* Typesets a marker at the point where \footnote is called;
* Typesets a marker at the bottom of the page on which \footnote is called;
* Following the marker at the bottom of the page, typesets the text of the footnote.

\@makefnmark
\@thefnmark

The \footnote macro calls the kernel command \@makefnmark to typeset the foot-
note marker at the point where \footnote is called (the value of the marker is kept in
the macro \@thefnmark which is defined by the \footnote or \footnotemark macros).
The default definition typesets the mark as a superscript and is effectively

240

12.1. Footnotes

MAIN TEXT
\skip\footins
\footnoterule
\footnotesep
1
\footnotesep
2

Figure 12.1: Footnote layout parameters

\newcommand*{\@makefnmark}{\hbox{\@thefnmark}}

You can change this if, for example, you wanted the marks to be in parentheses at the
baseline.

\renewcommand*{\@makefnmark}{{\footnotesize (\@thefnmark)}}
or, somewhat better to take account of the size of the surrounding text
\renewcommand*{\@makefnmark}{\slashfracstyle{(\@thefnmark)}}

\footfootmark
\footmarkstyle{(arg)}

The class macro for typesetting the marker at the foot of the page is \footfootmark. The
appearance of the mark is controlled by \footmarkstyle. The default specification is

\footmarkstyle{#1}
where the #1 indicates the position of \@thefnmark in the style. The default results in the

mark being set as a superscript. For example, to have the marker set on the baseline and
followed by a right parenthesis, do

\footmarkstyle{#1) }

[\footmarkwidth \footmarksep \footparindent \

The mark is typeset in a box of width \footmarkwidth If this is negative, the mark is
outdented into the margin, if zero the mark is flush left, and when positive the mark is
indented. The mark is followed by the text of the footnote. Second and later lines of
the text are offset by the length \footmarksep from the end of the box. The first line of

241

12. PAGE NOTES

Table 12.1: Some footnote text styles

\footmarkwidth \footmarksep Comment

1.8em -1.8em Flushleft, regular indented paragraph (the
default)
1.8em Oem Indented, block paragraph hung on the
mark
Oem Oem Flushleft, block paragraph
-1.8em 1.8em Block paragraph, flushleft, mark in the
margin
-1sp Oem Block paragraph, flushleft, mark in the

margin but flush against the text

a paragraph within a footnote is indented by \footparindent. The default values for
these lengths are:

\setlength{\footmarkwidth}{1.8em}
\setlength{\footmarksep}{-\footmarkwidth}
\setlength{\footparindent}{lem}

[\foottextfont \

The text in the footnote is typeset using the \foottextfont font. The default is
\footnotesize.
In case you wanted the footnotes to be typeset ragged right you can use

\renewcommand\foottextfont{\footnotesize\raggedright}

Just be aware that (1) \raggedright has an effect on paragraph settings, so things like
\parindent might need to be reset to \footparindent after \raggedright. (2) Col-
umn footnotes are already in ragged right. (3) \raggedright should never be used with
paragraph footnotes.

Altogether, the class specifies

\footmarkstyle{#1}
\setlength{\footmarkwidth}{1.8em}
\setlength{\footmarksep}{-1.8em}
\setlength{\footparindent}{lem}
\newcommand{\foottextfont}{\footnotesize}

to replicate the standard footnote layout.

You might like to try the combinations of \footmarkwidth and \footmarksep listed
in Table 12.1 to see which you might prefer. Not listed in the Table, to get the marker
flushleft and then the text set as a block paragraph you can try:

\setlength{\footmarkwidth}{1.8em}
\setlength{\footmarksep}{Oem}
\footmarkstyle{#1\hfill}

As an example of a rather different scheme, in at least one discipline the footnoted text
in the main body has a marker at each end. It is possible to define a macro to do this:

242

Added Summer
2023

12.1. Footnotes

\newcommand{\wrapfootnote}[1]{\stepcounter\@mpfnj,
% marks in the text
\protected@xdef\@thefnmark{\thempfn}y,
\@footnotemark #1\@footnotemarky
% marks at the bottom
\protected@xdef\@thefnmark{\thempfn--\thempfn}y,
\@footnotetext}

The macro is based on a posting to CTT by Donald Arseneau in November 2003, and is
used like this:

Some
\wrapfootnote{disciplines}{For example, Celtic studies.}
require double marks in the text.

Some °disciplines’ require double marks in the text.

\fnsymbol{{counter)}
\@fnsymbol{(num)}

Any footnotes after this point will be set according to:

\setlength{\footmarkwidth}{-1.0em}
\setlength{\footmarksep}{-\footmarkwidth}
\footmarkstyle{#1}

The \fnsymbol macro typesets the representation of the counter (counter) like a foot-
note symbol. Internally it uses the kernel \@fnsymbol macro which converts a positive
integer (num) to a symbol. If you are not fond of the standard ordering of the footnote
symbols, this is the macro to change. Its original definition is:

\def\@fnsymbol#1{\ensuremath{’
\ifcase#1\or *\or \dagger\or \ddagger\or
\mathsection\or \mathparagraph\or \|[\or **\or
\dagger\dagger \or \ddagger\ddagger \else\@ctrerr\fi}}

This, as shown by \@fnsymbol{1},...\@fnsymbol{9} produces the series:

17,5 8 9 |, #* 11, and f.
Robert Bringhurst quotes the following as the traditional ordering (at least up to 9):

1,458 |, 9, 11, and 11.

You can obtain this sequence by redefining \@fnsymbol as:

\renewcommand*{\@fnsymbol} [1] {\ensuremath{’
\ifcase#1\or *\or \dagger\or \ddagger\or
\mathsection\or \|\or \mathparagraph\or **\or \dagger\dagger
\or \ddagger\ddagger \else\@ctrerr\fil}}

55For example, Celtic studies.

243

12. PAGE NOTES

not forgetting judicious use of \makeatletter and \makeatother if you do this in the
preamble. Other authorities or publishers may prefer other sequences and symbols.
To get the footnote reference marks set with symbols use:

\renewcommand*{\thefootnote}{\fnsymbol{footnote}}
or to use roman numerals instead of the regular arabic numbers:

\renewcommand*{\thefootnote}{\roman{footnote}}

[\footnoterule

The rule separating footnotes from the main text is specified by \footnoterule:

\newcommand*{\footnoterule}{%
\kern-3pt¥%
\hrule width 0.4\columnwidth
\kern 2.6pt}

If you don’t want a rule (but you might later), then the easiest method is:

\let\oldfootnoterule\footnoterule
\renewcommand*{\footnoterule}{}

and if you later want rules you can write:

\let\footnoterule\oldfootnoterule

In Figure 12.1 we see that the footnotes are separated from the text by \skip\footins.
We provide a special interface to set this skip:

| \setfootins{(length for normal)}{(length for minipage)} |

The default is similar to
\setfootins{\bigskipamount}{\bigskipamount}

Internally \setfootins also sets the skips being used by \twocolumnfootnotes and
friends.

12.2 MARGINAL NOTES

Some marginalia can also be considered to be kinds of floats. The class provides the stan-
dard margin notes via \marginpar. Remember that the width of the margin note, the sep-
aration from the text, and the separation from one \marginpar to another is controlled by
\setmarginnotes, see §2.5 on page 20.

\marginpar [(left-text)] {{text)}
\marginparmargin{(placement)}
\reversemarginpar
\normalmarginpar

Just as a reminder, the \marginpar macro puts (text) into the margin alongside the type-
block — the particular margin depends on the document style and the particular page.

244

Added March 2025

12.3. Side notes

The interface for specifying which margin \marginpar (and friends) write to, have
long been quite cluttered, so we have in 2010 adopted a more textual and natural inter-
face. For \marginpar the macro is named \marginparmargin{(placement)} with pos-
sible placements: left, right, outer, and inner. The interpretation of which is explained in
Figure 12.2. The default corresponds to \marginparmargin{outer}.

\Xmargin{(placement)} for possible placements: left, right, outer, and inner

Two column document If the note is placed in the first column, to the left, otherwise to
the right, irrespective the document being one- or two-side and of the users choices.

One sided document If user specified left, notes are placed to the left, otherwise to the
right.

Two sided document depends on whether a recto or verso page:

Recto (odd) page note is placed on the right if the user specified right or outer,
otherwise the note is placed on the left.

Verso (even) page note is placed on the left if the user specified left or outer, oth-
erwise the note is placed on the right.

Figure 12.2: Interpretation of the arguments to the \Xmargin commands for specifying
the side in which to place side note like material. X here equals marginpar, sidepar,
sidebar, or sidefoot.

The original convoluted methods of specifying the margin for \marginpar is deprecated,
although still supported; if you need to know what they are then you can read all about
them in memoir.dtx.

Sometimes LaTeX gets confused near a page break and a note just after a break may
get put into the wrong margin (the wrong margin for the current page but the right one if
the note fell on the previous page). If this occurs then inserting the \strictpagecheck
declaration before any \marginpar command is used will prevent this, at the cost of at
least one additional LaTeX run.

Caveat. In two column mode there is a bug in the output routine where the test for
whether you are in the first or the second column may fail. In this case you can load the
mparhack package and see if that helps. As the name suggestes it is a bit of a hack and
may be incompatible with other packages.

Earlier the class would autoload mparhack in two column mode, but as of March
2025, we no longer do so, as there are relevant packages known to be incompatible
with it.

12.3 SIDE NOTES

The vertical position of margin notes specified via \marginpar is flexible so that adjacent
notes are prevented from overlapping.

245

12. PAGE NOTES

\sidepar [(left)] {(right)}
\sideparmargin{(placement)}
\sideparfont

\sideparform
\sideparvshift

The \sidepar macro is similar to \marginpar except that it produces side notes that
do not float — they may overlap.

The same spacing is used for both \marginpar and \sidepar, namely the lengths
\marginparsep and \marginparwidth. See \setmarginnotes, in §2.5 on page 20.

The length \sideparvshift can be used to make vertical adjustments to the position
of \sidepar notes. By default this is set to a value of Opt which should align the top of the
note with the text line.

The command \sideparfont is used to specify the font used for the \sidepar, de-
fault is \normalfont\normalsize.

While \sideparfont holds the font settings for the sidepar, the local adjustment is
kept in \sideparform, the default is

\newcommand*{\sideparform}{’
\ifmemtortm\raggedright\else\raggedleft\fi}

Which is a special construction the makes the text go flush against the text block on side
specified via \sideparmargin. Since the margin par area is usually quite narrow it might
be an idea to use a ragged setup which enables hyphenation. This can be achieved by

\usepackage{ragged2e}
\newcommand*{\sideparform}{%
\ifmemtortm\RaggedRight\else\RaggedLeft\fi}

The macro \sideparmargin{(placement)} can be used to specify which margin the
side note should go to. (placement) should be one of left, right, outer, or inner. Interpre-
tation of which is explained in Figure 12.2. For some now forgotten reason the default
corresponds to \sideparmargin{left}.®

By default the (right) argument is put in the left margin. When the twoside option is
used the (right) argument is put into the right margin on the verso (even numbered) pages;
however, for these pages the optional (left) argument is used instead if it is present. For
two column text the relevent argument is put into the ‘outer” margin with respect to the
column.

The original convoluted methods of specifying the margin for \sidepar is deprecated,
although still supported; if you need to know what they are then you can read all about
them in memoir.dtx.

| \parnopar \

When LaTeX is deciding where to place the side notes it checks whether it is on an odd
or even page and sometimes TeX doesn’t realise that it has just moved onto the next page.
Effectively TeX typesets paragraph by paragraph (including any side notes) and at the
end of each paragraph sees if there should have been a page break in the middle of the
paragraph. If there was it outputs the first part of the paragraph, inserts the page break,

As not to change existing documents, we have decided to leave it like that.

246

12.4. Sidebars

and retains the second part of the paragraph, without retypesetting it, for eventual output
at the top of the new page. This means that side notes for any given paragraph are in the
same margin, either left or right. A side note at the end of a paragraph may then end up in
the wrong margin. The macro \parnopar forces a new paragraph but without appearing
to (the first line in the following paragraph follows immediately after the last element in
the prior paragraph with no line break). You can use \parnopar to make TeX to do its
page break calculation when you want it to, by splitting what appears to be one paragraph
into two paragraphs.

Bastiaan Veelo has kindly provided example code for another form of a side note, the
code is shown in Sniplet C.2 on page 411.

Bastiaan also noted that it provided an example of using the \foremargin length. If
you want to try it out, either put the code in your preamble, or put it into a package (i.e.,
.sty file) without the \makeat. .. commands.

12.4 SIDEBARS

Sidebars are typeset in the margin and usually contain material that is ancilliary to the
main text. They may be long and extend for more than one page.”

| \sidebar{(text)} \
The \sidebar command is like \marginpar in that it sets the (text) in the margin. How-
ever, unlike \marginpar the (fext) will start near the top of the page, and may continue

onto later pages if it is too long to go on a single page. If multiple \sidebar commands
are used on a page, the several (text)s are set one after the other.

| \sidebarmargin{(margin)} ‘

The macro \sidebarmargin{(placement)} can be used to specify which margin
the side note should go to. (placement) should be one of left, right, outer, or in-
ner. Interpretation of which is explained in Figure 12.2. The default corresponds to
\sidebarmargin{outer}.

| \sidebarfont \sidebarform \

The sidebar (text) is typeset using the \sidebarfont, whose initial definition is
\newcommand{\sidebarfont}{\normalsize\normalfont}

Sidebars are normally narrow so the text is set raggedright to reduce hyphenation prob-
lems and stop items in environments like itemize from overflowing. More accurately,
the text is set according to \sidebarform which is defined as:

\newcommand*{\sidebarform}{%
\ifmemtortm\raggedright\else\raggedleft\fi}

Which is a special construction the makes the text go flush against the text block on side
specified via \sideparmargin. Since the margin par area is usually quite narrow it might
be an idea to use a ragged setup which enables hyphenation. This can be achieved by

\usepackage{ragged2e}
\newcommand*{\sidebarform}{

7 Donald Arseneau’s help has been invaluable in getting the sidebar code to work.

247

12. PAGE NOTES

\ifmemtortm\RaggedRight\else\RaggedLeft\fi}

You may run into problems if the \sidebar command comes near a pagebreak, or if
the sidebar text gets typeset alongside main text that has non-uniform line spacing (like
around a \section). Further, the contents of sidebars may not be typeset if they are too
near to the end of the document.

| \sidebarwidth \sidebarhsep \sidebarvsep \

The (text) of a \sidebar is typeset in a column of width \sidebarwidth and there is
a horizontal gap of \sidebarhsep between the main text and the sidebar. The length
\sidebarvsep is the vertical gap between sidebars that fall on the same page; it also has
a role in controlling the start of sidebars with respect to the top of the page.

\sidebartopsep
\setsidebarheight{(height)}

The length \sidebartopsep controls the vertical position of the top of a sidebar.
The default is Opt which aligns it with the top of the typeblock. The command
\setsidebarheight sets the height of sidebars to (height), without making any al-
lowance for \sidebartopsep. The (length) argument should be equivalent to an integral
number of lines. For example:

\setsidebarheight{15\onelineskip}

The default is the \textheight.

Perhaps you would like sidebars to start two lines below the top of the typeblock but
still end at the bottom of the typeblock? If so, and you are using the calc package [?], then
the following will do the job:

\setlength{\sidebartopskip}{2\onelineskip}
\setsidebarheight{\textheight-\sidebartopskip}

The alignment of the text in a sidebar with the main text may not be particularly
good and you may wish to do some experimentation (possibly through a combination
of \sidebarvsep and \setsidebarheight) to improve matters.

Although you can set the parameters for your sidebars individually it is more efficient
to use the \setsidebars command; it must be used if you change the font and/or the
height.

| \setsidebars{(hsep) H (width) }{(vsep) }{(topsep) }{ {font) }{ (height)} \

The \setsidebars command can be used to set the sidebar parameters.
\sidebarhsep is set to (hsep), \sidebarwidth is set to (width), \sidebarvsep is set

to (vsep), \sidebartopsep is set to (topsep), \sidebarfont is set to (font), and finally
\setsidebarheight is used to set the height to (height). The default is:

\setsidebars{\marginparsep}{\marginparwidth}{\onelineskip}’
{Opt}{\normalsize\normalfont}{\textheight}

Any, or all, of the arguments can be a *, in which case the parameter corresponding to that
argument is unchanged. Repeating the above example of changing the topskip and the
height, assuming that the other defaults are satisfactory except that the width should be
3cm and an italic font should be used:

248

8

12.5. Side footnotes

\setsidebars{*}{3cm}{*}{2\onelineskip}{\itshapely,
{\textheight-\sidebartopsep}

Changing the marginpar parameters, for example with \setmarginnotes, will not
affect the sidebar parameters.

Note that \checkandfixthelayout neither checks nor fixes any of the sidebar param-
eters. This means, for instance, that if you change the \textheight from its default value
and you want sidebars to have the same height then after changing the \textheight
you have to call \checkandfixthelayout and then call \setsidebars with the (new)
\textheight. For instance:

\settypeblocksize{40\baselineskip}{5in}{*}

iéﬁeckandfixthelayout
\setsidebars{...}{...}{...}...H. . .H\textheight}

Unfortunately if a sidebar is on a double column page that either includes a double
column float or starts a new chapter then the top of the sidebar comes below the float or
the chapter title. I have been unable to eliminate this ‘feature’.

12.5 SIDE FOOTNOTES

Besides three already mentioned macros for writing in the margin (\marginpar,
\sidepar, and \sidebar) memoir also provide a functionality to add side footnotes. Ac-
tually two ways: one is to internally make \footnote use \marginpar to write in the
margin, the other is to collect all side footnotes bottom up in the margin.

\footnotesatfoot
\footnotesinmargin

\footnotesatfoot (the default) causes \footnote to place its text at the bottom of the
page. By issuing footnotesinmargin \footnote (and friends like \footnotetext)will
internally use \marginpar to write the footnote to the page.

12.5.1 Bottom aligned side footnotes

Bottom aligned footnotes works just like regular footnotes, just with a separate macro
\sidefootenote{(text)}, and here the side footnotes are placed at the bottom of the spec-
ified margin (more or like as if one had taken the footnotes from the bottom of the page
and moved it to the margin instead). All the major functionality is the same as for the
normal \footnote command.®
\sidefootnote [(num)]{(text)}
\sidefootnotemark [{(num)]
\sidefootnotetext [(num)]{{text)}

By default the regular footnotes and the side footnotes use different counters. If one
would like them to use the same counter, issue the following in the preamble:

\letcountercounter{sidefootnote}{footnote}

\sidefootnote does not make sense inside minipages. ..

249

12. PAGE NOTES

12.5.2 Setting the layout for \sidefootnote

There are several possibilities to change the appearance of the \sidefootnote:
Specifying the margin in which the side footnote should go, is done by

| \sidefootmargin{(keyword)} ‘

where (keyword) can be left, right, outer, and inner, and their meaning is explained in Fig-
ure 12.2. The default is outer.
\sidefoothsep
\sidefootwidth
\sidefootvsep

\sidefoothsep is a length controlling the separation from the text to the side footnote
column, default \marginparsep. \sidefootwidth is length controlling the width of
the side footnote column, default \marginparwidth, and \sidefootvsep is the vertical
distance between two side footnotes, default \onelineskip.

\sidefootadjust
\setsidefootheight{(height)}
\sidefootfont

\sidefootadjust is a length which specifies the placement of the side foot-
note column in relation to the bottom of the text block, the default is Opt.
\setsidefootheight sets the maximal height of the side footnote column, default
textwidth. Lastly \sidefootfont holds the general font setting for the side footnote,’
default \normalfont\footnotesize.

The macro

| \setsidefeet{(hsep) H(width) }{ (vsep) }{(adj)H{ (font) }{ (height)} \

sets the specifications all six settings above in one go.. An “* means ‘use the current value’.
So memoir internally use the following default

\setsidefeet{\marginparsep}{\marginparwidthl}
{\onelineskip}{Optl}¥%
{\normalfont\footnotesize}{\textheight}%

It is recommended to use this macro along with the other macros in the preamble to specify
document layout.

12.5.3 Styling \sidefootnote
| \sidefootmarkstyle{(code)} \

controls how the side footnote counter is typeset in the side footnote. The default is
\sidefootmarkstyle{#1}

The mark is typeset in a box of width \sidefootmarkwidth If this is negative, the
mark is outdented into the margin, if zero the mark is flush left, and when positive the
mark is indented. The mark is followed by the text of the footnote. Second and later lines
of the text are offset by the length \sidefootmarksep from the end of the box. The first
line of a paragraph within a footnote is indented by \sidefootparindent. The default
values for these lengths are:

There is a similar macro to control the font of the text alone.

250

12.6. Endnotes

\setlength{\sidefootmarkwidth}{Oem}
\setlength{\sidefootmarksep}{Oem}
\setlength{\sidefootparindent}{lem}

Caveat: It is natural to specify a length as \sidefootparindent as a IXTEX length, but it
has a down side. If, as we do here, set the value to 1lem, then since the size of the em unit
changes with the current font size, one will actually end up with an indent corresponding
to the font size being used when the

\setlength{\sidefootparindent}{lem}
was issued, not when it has used (where the font size most often will be \footnotesize).

At this point we consider this to be a feature not an error. One way to get pass this
problem it the following

\begingroup’ keep font change local
\sidefoottextfont
\global\setlength\sidefootparindent{lem}
\endgroup

Then it will store the value of em corresponding to the font being used.
| \sidefoottextfont \

holds the font being used by the side footnote, default \normalfont\footnotesize.

]\sidefootform ‘

is used to specify the raggedness of the text. Default
\newcommand*{\sidefootform}{\rightskip=\z@ \@plus 2em}

which is much like \raggedright but allows some hyphenation. One might consider
using

\usepackage{ragged2e}

\newcommand*{\sidefootform}{\RaggedRight}

Which does something similar.

12.5.4 Side footnote example

In the margin you will find the result of the following code:

Testing\sidefootnote{This is test} bottom aligned
footnotes.\sidefootnote{This is another side
footnote, spanning several lines.

And several paragraphs}\sidefootnote{And number three}

Testing! bottom aligned footnotes.>

12.6 ENDNOTES

Endnotes are often used instead of footnotes so as not to interrupt the flow of the main
text. Although endnotes are normally put at the end of the document, they may instead be
put at the end of each chapter.

251

IThis is test

2This is another side foot-
note, spanning several
lines.

And several para-
graphs

3 And number three

12. PAGE NOTES

The endnotes package already uses the command \endnote for an endnote, so the
class uses \pagenote for an endnote so as not to clash if you prefer to use the package.

\makepagenote
\pagenote [(id)]{(text)}
\printpagenotes \printpagenotes*

The general principle is that notes are written out to a file which is then input at the
place where the notes are to be printed. The note file has an ent extension, like the table
of contents file has a toc extension.

You have to put \makepagenote in your preamble if you want endnotes. This will
open the ent note file which is called \ jobname . ent.

In the body of the text use use \pagenote to create an endnote, just as you would use
\footnote to create a footnote. In the books that I have checked there are two common
methods of identifying an endnote:

1. Like a footnote, put a number in the text at the location of the note and use the same

number to identify the note when it finally gets printed.

2. Put no mark in the text, but when it is finally printed use a few words from the text
to identify the origin of the note. The page number is often used as well with this
method.

The (text) argument of \pagenote is the contents of the note and if the optional (id) argu-
ment is not used the result is similar to having used \footnote — a number in the main
text and the corresponding number in the endnotes listing (as in 1 above). For the second
reference style (2 above) use the optional (id) argument for the ‘few words’, and no mark
will be put into the main text but (id) will be used as the identification in the listing.

Note. If you ever look into the . ent file, you'll notice that it is very long and that every space in
the note text has been converted into line breaks. This is done to get a round an upper limit as to
how long a line of input can be in TEX. Some users wrote so long notes that they hit the limit, this
is our solution to the problem.

For one set of endnotes covering the whole document put \printpagenotes
where you want them printed, typically before any bibliography or index. The
\printpagenotes macro inputs the ent endnote file for printing and then closes it to
any further notes.

For notes at the end of each chapter put \printpagenotes*, which inputs the ent file
for printing then empties it ready for more notes, at the end of each chapter.

The simple use is like this:

\documentclass[...]{memoir}
\makepagenote

\begin{document}
\chapter{One}

...\pagenote{An end note.} ...

...\pagenote{Fascinating information.}

\chapter{Last}), chapter 9

252

12.6.

Endnotes

Notes
Chapter 1 One

1. An end note
2. Fascinating information.

Chapter 9 Last

1. Another note

Figure 12.3: Example endnote listing

...\pagenote{Another note.}/, 30th note

\printpagenotes

\end{document}

This will result in an endnote listing looking like Figure 12.3.
For notes at the end of each chapter:

\documentclass[...]{memoir}
\makepagenote
\begin{document}
\chapter{One}

...\pagenote{An end note.} ...
\printpagenotesx*
\chapter{Last}

...\pagenote{Another note.} ...

\printpagenotesx*
%%% no more chapters

\end{document}

\continuousnotenums
\notepageref

253

12. PAGE NOTES

The pagenote counter is used for the notes. By default the endnotes are numbered per
chapter. If you want the numbering to be continuous throughout the document use the
\continuousnotenums declaration. Normally the information on which page a note was
created is discarded but will be made available to notes in the endnote listing following
the \notepageref declaration. Both \continuousnotenums and \notepageref can
only be used in the preamble.

\notesname
\notedivision

When \printpagenotes (or \printpagenotesx) is called the first thing it does is
call the macro \notedivision. By default this is defined as:

\newcommand*{\notedivision}{\chapter{\notesname}}
with
\newcommand*{\notesname}{Notes}

In other words, it will print out a heading for the notes that will be read from the ent file.
\print. .. then closes the ent file for writing and after this \inputs it to get and process
the notes.

12.6.1 Changing the appearance
In the text

| \notenumintext{(num)} |

The pagenote counter is used for pagenotes. The macro \notenumintext is called by
\pagenote with the value of the pagenote counter as the (num) argument to print the
value of the pagenote counter in the main text. By default it is printed as a superscript,
but this can be changed, or even eliminated.

\newcommand*{\notenumintext}[1]{#1}

In the page note list

To better understand how a page note entry is formatted in the page note list, we start with
the following pseudo code (it is not exactly what you will see in the . ent file, but macros
will end up being called in this manner)

\prenoteinnotes
\noteidinnotes{(notenum)}{(id)}
\pageinnotesd{(auto generated note label key)}
\prenotetext

(Page note text)
\postnotetext
\postnoteinnotes

At the start and end we have the two macros \prenoteinnotes and \postnoteinnotes,
they take care of preparing for and ending an entry in the list. The list is typeset in a
manner where each item is (at least) a paragraph, so the default definition is

\newcommand{\prenoteinnotes}{\par\noindent}
\newcommand{\postnoteinnotes}{\par}

254

12.6. Endnotes

A user could change this to make it look a bit more like a list construction. For example
the following would give a hanging indentation

\renewcommand{\prenoteinnotes}{\par\noindent\hangindent 2em}

The \noteidinnotes calls \idtextinnotes to print the note (id) if it was given as the
optional argument to pagenote, otherwise it calls \notenuminnotes to print the note
number.
\noteidinnotes{(notenum)}{(id)}
\idtextinnotes{(id)}
\notenuminnotes{(num)}

These are defined respectively as:

\newcommand*{\idtextinnotes} [1]1{[#1]\space}
\newcommand*{\notenuminnotes}[1]{\normalfont #1.\space}

Next we execute \pageinnotes{(note label key)} which does nothing by default. But
if \notepageref is issued in the preamble two things happen, (1) each page note
issues a label such that we can refer back to its page, and (2) \pageinnotes calls
\printpageinnotes (or if hyperref is loaded \printpageinnoteshyperref)

\pageinnotes{(auto generated note label key)}
\printpageinnotes{(auto generated note label key)}
\printpageinnoteshyperref{(auto generated note label key)}
\pagerefname

Default definitions

\newcommand*{\printpageinnotes} [1]1{%

(\pagerefname\ \pageref{#1})\space}
\newcommand\printpageinnoteshyperref [1]{}

(\hyperref [#1]{\pagerefname\ \pageref*{#1}})\space}

That is if hyperref is loaded the entire text (page 3) will be the text of a hyperlink.

\prenotetext
\postnotetext

The actual text part of the page note is enclosed by \prenotetext and postnotetext.
By default they do nothing, but could easily be redefined such that (only) the entry text
would be in italic:

\renewcommand\prenotetext{\begingroup\itshape}
\renewcommand\postnotetext{\endgroup}

| \addtonotes{{text)} |

The macro \addtonotes inserts (fext) into the ent file.

Note. As the argument to \pagenote and \addtonotes is moving you may have to
\protect any fragile commands. If you get strange error messages, try using \protect and
see if they go away.

255

12. PAGE NOTES

Internally in \pagenote \addtonotes is used to provide chapter devisions into the note
list. It will detect both numbered and unnumbered chapters. The actual text is provided
using

\pagenotesubhead{(chapapp) H{ (num)}{(title)}
\pagenotesubheadstarred{(chapapp)}{(num)}{(title)}
\pnchap \pnschap

The macro \pagenotesubhead typesets the subheadings in an endnote list. The
(chapapp) argument is normally \chaptername but if the notes are from an appendix then
\appendixname is used instead. (num) is the number of the chapter, or blank if there is no
number. Lastly, (title) is \pnchap for regular chapters which defaults to the ToC entry, or
\pnschap for starred chapters which defaults to the normal title. The default definition of
\pagenotesubhead is very simply:

\newcommand*{\pagenotesubhead} [3]{/
\section*{#1 #2 #31}}
\newcommand\pagenotesubheadstarred{\pagenotesubhead} % i.e. the same

By default this means that the header for starred chapters will be something like »Chapter
Title«, which may look odd. In that case redefine \pagenotesubheadstarred to some-
thing similar to

\renewcommand\pagenotesubheadstarred [3]{\section*{#3}}

Just remember that unless you have specified \continuousnotenums in the preamble the
note counter (pagenote) will only be reset at the start of any numbered chapters (because
it is tied to changes in the chapter counter).

The scheme is set up under the assumption that notes will only be printed at the end of
the document. If you intend to put them at the end of each chapter, then you will probably
want to change the definitions of the \notedivision and \pagenotesubhead macros.
For example:

\renewcommand*{\notedivision}{\section*{\notesname}}
\renewcommand*{\pagenotesubhead} [3]{}

and remember to use \printpagenotes* at each place you want the current set of notes
to be printed.

Say you have written a document with footnotes, but later on decide on using end notes
(page notes) instead. In that case you can use \foottopagenote to make \footnote,
\footnotemark and \footnotetext works as if it was implemented using end notes.
On the other hand \pagetofootnote makes all page notes into footnotes (note that this
might not work, because there are places where page notes can be issued but foot notes
cannot).

\foottopagenote
\pagetofootnote

In either conversion the optional argument will be ignored as for \pagenote it can be
arbitrary text whereas for \footnote it must be a number.

256

Thirteen

Decorative text

Too servile a submission to the
books and opinions of the
ancients has spoiled many an
ingenious man, and plagued the
world with an abundance of
pedants and coxcombs.

James Puckle (1677?-1724)

By now we have covered most aspects of typesetting. As far as the class is concerned
this chapter describes the slightly more fun task of typesetting epigraphs.

Some authors like to add an interesting quotation at either the start or end of a chap-
ter. The class provides commands to assist in the typesetting of a single epigraph. Other
authors like to add many such quotations and the class provides environments to cater for
these as well. Epigraphs can be typeset at either the left, the center or the right of the type-
block. A few example epigraphs are exhibited here, and others can be found in an article
by Christina Thiele [?] where she reviewed the epigraph package [?] which is included in
the class.

13.1 EPIGRAPHS

The original inspiration for \epigraph was Doug Schenck’s for the epigraphs in our
book [?]. That was hard wired for the purpose at hand. The version here provides much
more flexibility.

| \epigraph{(text) }{(source)} |

The command \epigraph typesets an epigraph using (fext) as the main text of the epi-
graph and (source) being the original author (or book, article, etc.) of the quoted text. By
default the epigraph is placed at the right hand side of the typeblock, and the (source) is
typeset at the bottom right of the (text).

\begin{epigraphs}
\qitem{(text) }{ (source)}

\end{epigraphs}

The epigraphs environment typesets a list of epigraphs, and by default places them at the
right hand side of the typeblock. Each epigraph in an epigraphs environment is specified

257

13. DECORATIVE TEXT

by a \qitem (analagous to the \item command in ordinary list environments). By default,
the (source) is typeset at the bottom right of the (text).

13.2 GENERAL

Example is the school of mankind,
and they will learn at no other.

Letters on a Regicide Peace
EDMUND BURKE

The commands described in this section apply to both the \epigraph command and
the epigraphs environment. But first of all, note that an epigraph immediately after a
heading will cause the first paragraph of the following text to be indented. If you want the
initial paragraph to have no indentation, then start it with the \noindent command.

\epigraphwidth
\epigraphposition{(flush)}

The epigraphs are typeset in a minipage of width \epigraphwidth. The default value
for this can be changed using the \setlength command. Typically, epigraphs are typeset
in a measure much less than the width of the typeblock. The horizontal position of an
epigraph in relation to the main typeblock is controlled by the (flush) argument to the
\epigraphposition declaration. The default value is flushright, so that epigraphs
are set at the right hand side of the typeblock. This can be changed to flushleft for
positioning at the left hand side or to center for positioning at the center of the typeblock.

| \epigraphtextposition{(flush)} \

In order to avoid bad line breaks, the epigraph (fext) is normally typeset raggedright.
The (flush) argument to the \epigraphtextposition declaration controls the (fext)
typesetting style. By default this is flushleft (which produces raggedright text).
The sensible values are center for centered text, flushright for raggedleft text, and
flushleftright for normal justified text.

If by any chance you want the (text) to be typeset in some other layout style, the easiest
way to do this is by defining a new environment which sets the paragraphing parameters
to your desired values. For example, as the (fext) is typeset in a minipage, there is no
paragraph indentation. If you want the paragraphs to be indented and justified then define
a new environment like:

\newenvironment{myparastyle}{\setlength{\parindent}{lem}}{}
and use it as:

\epigraphtextposition{myparastyle}

| \epigraphsourceposition{{flush)} |

The (flush) argument to the \epigraphsourceposition declaration controls the position
of the (source). The default value is f1lushright. It can be changed to flushleft, center
or flushleftright.

For example, to have epigraphs centered with the (source) at the left, add the following
to your document.

258

13.3. Epigraphs before chapter headings

\epigraphposition{center}
\epigraphsourceposition{flushleft}

| \epigraphfontsize{{fonisize)} \

Epigraphs are often typeset in a smaller font than the main text. The (fontsize) argument
to the \epigraphfontsize declaration sets the font size to be used. If you don't like the
default value (\small), you can easily change it to, say \footnotesize by:

\epigraphfontsize{\footnotesize}

| \epigraphrule \

By default, a rule is drawn between the (text) and (source), with the rule thickness being
given by the value of \epigraphrule. The value can be changed by using \setlength.
A value of Opt will eliminate the rule. Personally, I dislike the rule in the list environments.

\beforeepigraphskip
\afterepigraphskip

The two . . . skip commands specify the amount of vertical space inserted before and after
typeset epigraphs. Again, these can be changed by \setlength. It is desireable that the
sum of their values should be an integer multiple of the \baselineskip.
Note that you can use normal LaTeX commands in the (text) and (source) arguments.
You may wish to use different fonts for the (text) (say roman) and the (source) (say italic).
The epigraph at the start of this section was specified as:

\epigraph{Example is the school of mankind,
and they will learn at no other.}
{\textit{Letters on a Regicide Peace}\\ \textsc{Edmund Burkel}}

13.3 EPIGRAPHS BEFORE CHAPTER HEADINGS

If all else fails, immortality can
always be assured by spectacular
error.

John Kenneth Galbraith

The \epigraph command and the epigraphs environment typeset an epigraph at the
point in the text where they are placed. The first thing that a \chapter command does
is to start off a new page, so another mechanism is provided for placing an epigraph just
before a chapter heading.

| \epigraphhead [(distance)] {{text)} \

The \epigraphhead macro stores (fext) for printing at (distance) below the header on a
page. (fext) can be ordinary text or, more likely, can be either an \epigraph command or
an epigraphs environment. By default, the epigraph will be typeset at the righthand mar-
gin. If the command is immediately preceded by a \chapter or \chapter* command,
the epigraph is typeset on the chapter title page.

The default value for the optional (distance) argument is set so that an \epigraph con-
sisting of a single line of quotation and a single line denoting the source is aligned with

259

13. DECORATIVE TEXT

the bottom of the ‘Chapter X’ line produced by the \chapter command using the default
chapterstyle. In other cases you will have to experiment with the (distance) value. The
value for (distance) can be either a integer or a real number. The units are in terms of the
current value for \unitlength. A typical value for (distance) for a single line quotation
and source for a \chapter* might be about 70 (points). A positive value of (distance)
places the epigraph below the page heading and a negative value will raise it above the
page heading.

Here’s some example code:

\chapter*{Celestial navigation}

\epigraphhead[70]{\epigraph{Star crossed lovers.}{\textit{The Bard}}}

The (text) argument is put into a minipage of width \epigraphwidth. If you use some-
thing other than \epigraph or epigraphs for the (fext) argument, you may have to do
some positioning of the text yourself so that it is properly located in the minipage. For
example

\chapter{Short}
\renewcommand{\epigraphflush}{center}
\epigraphhead{\centerline{Short quotel}}

The \epigraphhead command changes the page style for the page on which it is spec-
ified, so there should be no text between the \chapter and the \epigraphhead com-
mands. The page style is identical to the plain page style except for the inclusion of the
epigraph. If you want a more fancy style for epigraphed chapters you will have to do some
work yourself.

\epigraphforheader [(distance)]{(text)}
\epigraphpicture

The \epigraphforheader macro takes the same arguments as \epigraphhead but puts
(text) into a zero-sized picture at the coordinate position (0,-<distance>); the macro
\epigraphpicture holds the resulting picture. This can then be used as part of a chapter
pagestyle, as in

\makepagestyle{mychapterpagestyle}

\makeoddhead{mychapterpagestyle}{}{}{\epigraphpicture}

Of course the (text) argument for \epigraphforheader need notbe an \epigraph, it can
be arbitrary text.

\dropchapter{(length)}
\undodrop

If a long epigraph is placed before a chapter title it is possible that the bottom of the epi-
graph may interfere with the chapter title. The command \dropchapter will lower any
subsequent chapter titles by (length); a negative (length) will raise the titles. The command
\undodrop restores subsequent chapter titles to their default positions. For example:

\dropchapter{2in}
\chapter{Title}
\epigraphhead{long epigraph}
\undodrop

260

13.3. Epigraphs before chapter headings

| \cleartoevenpage [{text)] ‘

On occasions it may be desirable to put something (e.g., an epigraph, a map, a picture) on
the page facing the start of a chapter, where the something belongs to the chapter that is
about to start rather than the chapter that has just ended. In order to do this in a document
that is going to be printed doublesided, the chapter must start on an odd numbered page
and the pre-chapter material put on the immediately preceding even numbered page. The
\cleartoevenpage command is like \cleardoublepage except that the page follow-
ing the command will be an even numbered page, and the command takes an optional
argument which is applied to the skipped page (if any).
Here is an example:

. end previous chapter.
\cleartoevenpage
\begin{center}
\begin{picture}... \end{picture}
\end{center}
\chapter{Next chapter}

If the style is such that chapter headings are put at the top of the pages, then it would
be advisable to include \thispagestyle{empty} (or perhaps plain)immediately after
\cleartoevenpage to avoid a heading related to the previous chapter from appearing on
the page.

If the something is like a figure with a numbered caption and the numbering depends
on the chapter numbering, then the numbers have to be hand set (unless you define a
special chapter command for the purpose). For example:

. end previous chapter.
\cleartoevenpage [\thispagestyle{empty}] % a skipped page to be empty
\thispagestyle{plain}
\addtocounter{chapter}{1} % increment the chapter number
\setcounter{figure}{0} % initialise figure counter
\begin{figure}

\caption{Pre chapter figure}
\end{figure}

\addtocounter{chapter}{-1} % decrement the chapter number
\chapter{Next chapter} % increments chapter & resets figure numbers
\addtocounter{figure}{1} % to account for pre-chapter figure

13.3.1 Epigraphs on book or part pages

If you wish to put an epigraphs on \book or \part pages you have to do a little more
work than in other cases. This is because these division commands do some page flipping
before and after typesetting the title.

One method is to put the epigraph into the page header as for epigraphs before
\chapter titles. By suitable adjustments the epigraph can be placed anywhere on the
page, independently of whatever else is on the page. A similar scheme may be used

261

13. DECORATIVE TEXT

for epigraphs on other kinds of pages. The essential trick is to make sure that the epi-
graph pagestyle is used for the page. For an epigraphed bibliography or index, the macros
\prebibhook or \preindexhook can be appropriately modified to do this.
The other method is to subvert the \beforepartskip command for epigraphs before
the title, or the \afterpartskip command for epigraphs after the title (or the equivalents
for \book pages).
For example:
\let\oldbeforepartskip\beforepartskip % save definition
\renewcommand*{\beforepartskip}t{%

\epigraph{...}{...}/ an epigraph

\vfil}
\part{An epigraphed part}

\renewcommand*{\beforepartskip}t{%
\epigraph{...}{...}/ another epigraph
\vfil}

\part{A different epigraphed part}

\let\beforepartskip\oldbeforepartskip) restore definition
\part{An unepigraphed part}

262

Fourteen

Poetry

The typesetting of a poem should ideally be dependent on the particular poem. Individual
problems do not usually admit of a general solution, so this manual and code should be
used more as a guide towards some solutions rather than providing a ready made solution
for any particular piece of verse.

The doggerel used as illustrative material has been taken from [?].

Note that for the examples in this section I have made no attempt to do other than use
the minimal (La)TeX capabilities; in particular I have made no attempt to do any special
page breaking so some stanzas may cross onto the next page — most undesireable for
publication.

The standard LaTeX classes provide the verse environment which is defined as a par-
ticular kind of list. Within the environment you use \\ to end a line, and a blank line will
end a stanza. For example, here is the text of a single stanza poem:

\newcommand{\garden}{

I used to love my garden \\

But now my love is dead \\

For I found a bachelor’s button \\
In black-eyed Susan’s bed.

}

When this is typeset as a normal LaTeX paragraph (with no paragraph indentation), i.e.,
\noident\garden

it looks like:

I used to love my garden

But now my love is dead

For I found a bachelor’s button
In black-eyed Susan’s bed.

Typesetting it within the verse environment produces:

I'used to love my garden

But now my love is dead

For I found a bachelor’s button
In black-eyed Susan’s bed.

The stanza could also be typeset within the alltt environment, defined in the stan-
dard alltt package [?], using a normal font and no \\ line endings.

263

14. POETRY

\begin{alltt}\normalfont

I used to love my garden

But now my love is dead

For I found a bachelor’s button
In black-eyed Susan’s bed.
\end{alltt}

which produces:

I used to love my garden

But now my love is dead

For I found a bachelor’s button
In black-eyed Susan’s bed.

The alltt environment is like the verbatim environment except that you can use
LaTeX macros inside it. In the verse environment long lines will be wrapped and indented
but in the alltt environment there is no indentation.

Some stanzas have certain lines indented, often alternate ones. To typeset stanzas like
this you have to add your own spacing. For instance:

\begin{verse}

There was an old party of Lyme \\

Who married three wives at one time. \\
\hspace{2em} When asked: ‘Why the third?’ \\
\hspace{2em} He replied: ‘One’s absurd, \\
And bigamy, sir, is a crime.’

\end{verse}

is typeset as:

There was an old party of Lyme

Who married three wives at one time.
When asked: “Why the third?’
He replied: ‘One’s absurd,

And bigamy, sir, is a crime.”

Using the alltt environment you can put in the spacing via ordinary spaces. That is,
this:
\begin{alltt}\normalfont
There was an old party of Lyme
Who married three wives at one time.
When asked: ‘Why the third?’
He replied: ‘One’s absurd,
And bigamy, sir, is a crime.’
\end{alltt}

is typeset as

There was an old party of Lyme

264

1

14.1. Classy verse

Who married three wives at one time.
When asked: “Why the third?’
He replied: ‘One’s absurd,

And bigamy, sir, is a crime.”

More exotically you could use the TeX \parshape command':

\parshape = 5 Opt \linewidth Opt \linewidth
2em \linewidth 2em \linewidth Opt \linewidth
\noindent There was an old party of Lyme \\
Who married three wives at one time. \\
When asked: ‘Why the third?’ \\
He replied: ‘One’s absurd, \\
And bigamy, sir, is a crime.’ \par

which will be typeset as:

There was an old party of Lyme

Who married three wives at one time.
When asked: “Why the third?’
He replied: ‘One’s absurd,

And bigamy, sir, is a crime.’

This is about as much assistance as standard (La)TeX provides, except to note that in
the verse environment the * version of \\ will prevent a following page break. You
can also make judicious use of the \needspace macro to keep things together.

Some books of poetry, and especially anthologies, have two or more indexes, one, say
for the poem titles and another for the first lines, and maybe even a third for the poets’
names. If you are not using memoir then the index [?] and multind [?] packages provide
support for multiple indexes in one document.

14.1 CLASSY VERSE

The code provided by the memoir class is meant to help with some aspects of typesetting
poetry but does not, and cannot, provide a comprehensive solution to all the requirements
that will arise.

The main aspects of typesetting poetry that differ from typesetting plain text are:

* Poems are usually visually centered on the page.
* Some lines are indented, and often there is a pattern to the indentation.

* When a line is too wide for the page it is broken and the remaining portion indented
with respect to the original start of the line.

These are the ones that the class attempts to deal with.

\begin{verse} [{length)] ... \end{verse}
\versewidth

See the TeXbook for how to use this.

265

14. POETRY

The verse environment provided by the class is an extension of the usual LaTeX envi-
ronment. The environment takes one optional parameter, which is a length; for example
\begin{verse}[4em]. You may have noticed that the earlier verse examples are all near
the left margin, whereas verses usually look better if they are typeset about the center of
the page. The length parameter, if given, should be about the length of an average line,
and then the entire contents will be typeset with the mid point of the length centered hor-
izontally on the page.

The length \versewidth is provided as a convenience. It may be used, for example,
to calculate the length of a line of text for use as the optional argument to the verse envi-
ronment:

\settowidth{\versewidth}{This is the average line,}
\begin{verse}[\versewidth]

| \vleftmargin |

In the basic LaTeX verse environment the body of the verse is indented from the left of the
typeblock by an amount \leftmargini, as is the text in many other environments based
on the basic LaTeX 1ist environment. For the class’s version of verse the default indent
is set by the length \vleftmargin (which is initially set to leftmargini). For poems
with particularly long lines it could perhaps be advantageous to eliminate any general
indentation by:

\setlength{\vleftmargin}{Oem}

If necessary the poem could even be moved into the left margin by giving \vleftmargin
a negative length value, such as -1.5em.

| \stanzaskip |

The vertical space between stanzas is the length \stanzaskip. It can be changed by the
usual methods.

\vin
\vgap
\vindent

The command \vin is shorthand for \hspace*{\vgap} for use at the start of an in-
dented line of verse. The length \vgap (initially 1.5em) can be changed by \setlength
or \addtolength. When a verse line is too long to fit within the typeblock it is wrapped
to the next line with an initial indent given by the value of the length vindent. Its initial
value is twice the default value of \vgap.

\\ [(length)]
* [(length)]
\\'! [(length)]

Each line in the verse environment, except possibly for the last line in a stanza, must
be ended by \\, which comes in several variants. In each variant the optional (length) is
the vertical space to be left before the next line. The * form prohibits a page break after
the line. The \\! form is to be used only for the last line in a stanza when the lines are
being numbered; this is because the line numbers are incremented by the \\ macro. It
would normally be followed by a blank line.

266

14.1. Classy verse

\verselinebreak [(length)]
\\> [(length)]

Using \verselinebreak will cause later text in the line to be typeset indented on the fol-
lowing line. If the optional (length) is not given the indentation is twice \vgap, otherwise it
is (length). The broken line will count as a single line as far as the altverse and patverse
environments are concerned. The macro \\> is shorthand for \verselinebreak, and un-
like other members of the \\ family the optional (length) is the indentation of the following
partial line, not a vertical skip. Also, the \\> macro does not increment any line number.

| \vinphantom{(text)} ‘

Verse lines are sometimes indented according to the space taken by the text on the previous
line. The macro \vinphantom can be used at the start of a line to give an indentation as
though the line started with (fext). For example here are a few lines from the portion of
Fridthjof’s Saga where Fridthjof and Ingeborg part:

Source for Example 14.1

\settowidth{\versewidth}{Nay, nay, I leave thee not,
thou goest tool}
\begin{verse}[\versewidth]
\1ldots *
His judgement rendered, he dissolved the Thing. *
\flagverse{Ingeborg} And your decision? *
\flagverse{Fridthjof} \vinphantom{And your decision?}
Have I ought to choose? *

Is not mine honour bound by his decree? *
And that I will redeem through Angantyr *
His paltry gold doth hide in Nastrand’s flood. *
Today will I depart. *
\flagverse{Ingeborg} \vinphantom{Today will I depart.}

And Ingeborg leave? *
\flagverse{Fridthjof} Nay, nay, I leave thee not,

thou goest too. *
\flagverse{Ingeborg} Impossible! *
\flagverse{Fridthjof} \vinphantom{Impossible!}

0! hear me, ere thou answerest.

\end{verse}

Use of \vinphantom is not restricted to the start of verse lines — it may be used any-
where in text to leave some some blank space. For example, compare the two lines below,
which are produced by this code:

\noindent Come away with me and be my love --- Impossible. \\
Come away with me \vinphantom{and be my love} --- Impossible.

Come away with me and be my love — Impossible.
Come away with me — Impossible.

] \vleftoflined{(text)} ‘

267

14. POETRY

Typeset Example 14.1: Phantom text in verse

His judgement rendered, he dissolved the Thing.
Ingeborg And your decision?
Fridthjof Have I ought to choose?

Is not mine honour bound by his decree?

And that I will redeem through Angantyr

His paltry gold doth hide in Nastrand'’s flood.

Today will I depart.
Ingeborg And Ingeborg leave?
Fridthjof Nay, nay, I leave thee not, thou goest too.
Ingeborg Impossible!
Fridthjof O! hear me, ere thou answerest.

A verse line may start with something, for example open quote marks, where it is desire-
able that it is ignored as far as the alignment of the rest of the line is concerned” — a sort of
‘hanging left punctuation’. When it is put at the start of a line in the verse environment
the (fext) is typeset but ignored as far as horizontal indentation is concerned. Compare the
two examples.

Source for Example 14.2

\noindent ‘‘No, this is what was spoken by the prophet Joel:
\begin{verse}

€\, ‘\, “‘In the last days,’’ God says, \\

¢‘I will pour out my spirit on all people. \\

Your sons and daughters will prophesy, \\

\1ldots \\

And everyone who calls \ldots ’’\,’

\end{verse}

Source for Example 14.3

\noindent °‘No, this is what was spoken by the prophet Joel:
\begin{verse}

\vleftofline{‘‘\, ‘\, ‘‘}In the last days,’’ God says, \\
\vleftofline{‘‘}I will pour out my spirit on all people. \\
Your sons and daughters will prophesy, \\

\ldots \\

2 Requested by Matthew Ford who also provided the example text.

268

14.1. Classy verse

Typeset Example 14.2: Verse with regular quote marks

“No, this is what was spoken by the prophet Joel:
“*“In the last days,” God says,
“I will pour out my spirit on all people.
Your sons and daughters will prophesy,

7

And everyone who calls ...”

Typeset Example 14.3: Verse with hanging left quote marks

“No, this is what was spoken by the prophet Joel:
“““In the last days,” God says,
“I will pour out my spirit on all people.
Your sons and daughters will prophesy,

7

And everyone who calls ...”

And everyone who calls \ldots ’’\,’
\end{verse}

14.1.1 Indented lines

Within the verse environment stanzas are normally separated by a blank line in the input.

| \begin{altverse} .. \end{altverse} \

Individual stanzas within verse may, however, be enclosed in the altverse environ-
ment. This has the effect of indenting the 2nd, 4th, etc., lines of the stanza by the length
\vgap.

\begin{patverse} ... \end{patverse}
\begin{patversex*} ... \end{patversex}
\indentpattern{(digits)}

As an alternative to the altverse environment, individual stanzas within the verse en-
vironment may be enclosed in the patverse environment. Within this environment the
indentation of each line is specified by an indentation pattern, which consists of an array
of digits, d; to d,,, and the nth line is indented by d,, times \vgap. However, the first line
is not indented, irrespective of the value of d;.

The indentation pattern for a patverse or patverse* environment is specified via
the \indentpattern command, where (digits) is a string of digits (e.g., 3213245281).

269

14. POETRY

With the patverse environment, if the pattern is shorter than the number of lines in the
stanza, the trailing lines will not be indented. However, in the patverse* environment
the pattern keeps repeating until the end of the stanza.

14.1.2 Numbering

\flagverse{(flag)}
\vleftskip

Putting \flagverse at the start of a line will typeset (flag), for example the stanza number,
ending at a distance \vleftskip before the line. The default for \vleftskip is 3em.
The lines in a poem may be numbered.

\linenumberfrequencyd{(nth)}
\setverselinenums{(first) }{(startat)}

The declaration \1inenumberfrequency{ (nth)} will cause every (nth) line of succeeding
verses to be numbered. For example, \1inenumberfrequency{5} will number every
fifth line. The default is \1inenumberfrequency{0} which prevents any numbering.

Changed. Verse line numbers are now added at the start of the line via a paragraph
hook.? This affects how lines with a automatic line break are numbered. They are now
always aligned with the first line of a broken line.

This change also remove the need to have \\ after the last line of a poem in order to
have it numbered.

The \setverselinenums macro can be used to specify that the number of the first line
of the following verse shall be (first) and the first printed number shall be (startat). For
example, perhaps you are quoting part of a numbered poem. The original numbers every
tenth line but if your extract starts with line 7, then

\linenumberfrequency{10}
\setverselinenums{7}{10}

is what you will need.

\thepoemline
\1linenumberfont{(font-decl)}

The poemline counter is used in numbering the lines, so the number representation is
\thepoemline, which defaults to arabic numerals, and they are typeset using the font
specified via \1inenumberfont; the default is

\linenumberfont{\small\rmfamily}

for small numbers in the roman font.

\verselinenumbersright
\verselinenumbersleft
\vrightskip

Internally all the lines of a verse are actually separate paragraphs. The line numbers are added via a hook into
the start of paragraphs inside verse and friends.

270

Added February
2024

14.2. Titles

Following the declaration \verselinenumbersright, which is the default, any verse line
numbers will be set in the righthand margin. The \verselinenumbersleft declaration
will set any subsequent line numbers to the left of the lines. The numbers are set at a
distance \vrightskip (default lem) into the margin.

14.2 TITLES

The \PoemTitle command is provided for typesetting titles of poems.

\PoemTitle [(fortoc)] [(forhead)]{(title)}
\NumberPoemTitle

\PlainPoemTitle

\thepoem

The \PoemTitle command takes the same arguments as the \chapter command;
it typesets the title for a poem and adds it to the ToC. Following the declara-
tion \NumberPoemTitle the title is numbered but there is no numbering after the
\PlainPoemTitle declaration.

| \poemtoc{(sec)} \

The kind of entry made in the ToC by \PoemTitle is defined by \poemtoc. The initial
definition is:
\newcommand{\poemtoc}{section}

for a section-like ToC entry. This can be changed to, say, chapter or subsectionor....

\poemtitlemark{(forhead)}
\poemtitlepstyle

The macro \poemtitlemark is called with the argument (forhead) so that it may be used to
set marks for use in a page header via the normal mark process. The \poemtitlepstyle
macro, which by default does nothing, is provided as a hook so that, for example, it can be
redefined to specify a particular pagestyle that should be used. For example:

\renewcommand*{\poemtitlemark} [1] {\markboth{#1}{#1}}
\renewcommand*{\poemtitlepstyle}{%
\pagestyle{headings}/

\thispagestyle{empty}}

\PoemTitlex* [(forhead)] {(title)}

\poemtitlestarmark{(forhead)}
\poemtitlestarpstyle

The \PoemTitle* command produces an unnumbered title that is not added to the
ToC. Apart from that it operates in the same manner as the unstarred version. The
\poemtitlestarmark and \poemtitlestarpstyle can be redefined to set marks and
pagestyles.

271

14. POETRY

14.2.1 Main Poem Title layout parameters

\PoemTitleheadstart
\printPoemTitlenonum
\printPoemTitlenum
\afterPoemTitlenum
\printPoemTitletitle{(title)}
\afterPoemTitle

The essence of the code used to typeset a numbered (title) from a \PoemTitle is:

\PoemTitleheadstart
\printPoemTitlenum
\afterPoemTitlenum
\printPoemTitletitle{title}
\afterPoemTitle

If the title is unnumbered then \printPoemTitlenonum is used instead of the
\printPoemTitlenum and \afterPoemTitlenum pair of macros.
The various elements of this can be modified to change the layout. By default the
number is centered above the title, which is also typeset centered, and all in a \1arge font.
The elements are detailed in the next section.

14.2.2 Detailed Poem Title layout parameters

\beforePoemTitleskip
\PoemTitlenumfont
\midPoemTitleskip
\PoemTitlefont
\afterPoemTitleskip

As defined, \PoemTitleheadstart inserts vertical space before a poem title. The
default definition is:

\newcommand*{\PoemTitleheadstart}{\vspace{\beforePoemTitleskipl}}
\newlength{\beforePoemTitleskip}
\setlength{\beforePoemTitleskip}{1\onelineskip}

\printPoemTitlenum typesets the number for a poem title. The default definition,
below, prints the number centered and in a large font.

\newcommand*{\printPoemTitlenum}{\PoemTitlenumfont \thepoem}
\newcommand*{\PoemTitlenumfont}{\normalfont\large\centering}

The definition of \printPoemTitlenonum, which is used when there is no number, is
simply
\newcommand*{\printPoemTitlenonum}{}

\afterPoemTitlenum is called between setting the number and the title. It ends a
paragraph (thus making sure any previous \centering is used) and then may add some
vertical space. The default definition is:

\newcommand*{\afterPoemTitlenum}{\par\nobreak\vskip \midPoemTitleskip}
\newlength{\midPoemTitleskip}

272

14.3. Examples

\setlength{\midPoemTitleskip}{Opt}

The default definition of \printPoemTitletitle is below. It typesets the title cen-
tered and in a large font.

\newcommand*{\printPoemTitletitle}[1]{\PoemTitlefont #1}
\newcommand*{\PoemTitlefont}{\normalfont\large\centering}

The macro \afterPoemTitle finishes off the title typesetting. The default definition
is:
\newcommand*{\afterPoemTitle}{\par\nobreak\vskip \afterPoemTitleskip}

\newlength{\afterPoemTitleskip}
\setlength{\afterPoemTitleskip}{1\onelineskip}

14.3 EXAMPLES

Here are some sample verses using the class facilities.
First a Limerick, but titled and centered:

\renewcommand{\poemtoc}{subsection}
\PlainPoemTitle

\PoemTitle{A Limerick}
\settowidth{\versewidth}{There was a young man of Quebec}
\begin{verse}[\versewidth]

There was a young man of Quebec \\

Who was frozen in snow to his mneck. \\
\vin When asked: ‘Are you friz?’ \\
\vin He replied: ‘Yes, I is, \\

But we don’t call this cold in Quebec.’
\end{verse}

which gets typeset as below. The \poemtoc is redefined to subsection so that the
\poemtitle titles are entered into the ToC as subsections. The titles will not be numbered
because of the \PlainPoemTitle declaration.

A Limerick

There was a young man of Quebec
Who was frozen in snow to his neck.
When asked: “Are you friz?’
He replied: “Yes, I is,
But we don’t call this cold in Quebec.”

Next is the Garden verse within the altverse environment. Unlike earlier renditions
this one is titled and centered.

\settowidth{\versewidth}{But now my love is dead}
\PoemTitle{Love’s lost}
\begin{verse}[\versewidth]

273

14. POETRY

\begin{altverse}
\garden
\end{altverse}
\end{verse}

Note how the alternate lines are automatically indented in the typeset result below.

Love’s lost

I used to love my garden
But now my love is dead
For I found a bachelor’s button
In black-eyed Susan’s bed.

It is left up to you how you might want to add information about the author of a poem.
Here is one example of a macro for this:

\newcommand{\attrib} [1]1{%
\nopagebreak{\raggedleft\footnotesize #1\par}}

This can be used as in the next bit of doggerel.

\PoemTitle{Fleas}

\settowidth{\versewidth}{What a funny thing is a flea}
\begin{verse}[\versewidth]

What a funny thing is a flea. \\

You can’t tell a he from a she. \\

But he can. And she can. \\

Whoopee!

\end{verse}

\attrib{Anonymous}

Fleas

What a funny thing is a flea.
You can’t tell a he from a she.
But he can. And she can.
Whoopee!

Anonymous

The next example demonstrates the automatic line wrapping for overlong lines.

\PoemTitle{In the beginning}

\settowidth{\versewidth}{And objects at rest tended to
remain at rest}

\begin{versel} [\versewidth]

Then God created Newton, \\

And objects at rest tended to remain at rest, \\

And objects in motion tended to remain in motion, \\

274

14.3. Examples

And energy was conserved
and momentum was conserved
and matter was comnserved \\
And God saw that it was conservative.
\end{verse}
\attrib{Possibly from \textit{Analog}, circa 1950}

In the beginning

Then God created Newton,
And objects at rest tended to remain at rest,
And objects in motion tended to remain in motion,
And energy was conserved and momentum was conserved and
matter was conserved
And God saw that it was conservative.
Possibly from Analog, circa 1950

The following verse demonstrates the use of a forced linebreak; I have used the \\>
command instead of the more descriptive, but discursive, \verselinebreak. It also has
a slightly different title style.

\renewcommand{\PoemTitlefont}{%
\normalfont\large\itshape\centering}

\poemtitle{Mathematics}

\settowidth{\versewidth}{Than Tycho Brahe, or Erra Pater:}

\begin{verse}[\versewidth]

In mathematics he was greater \\

Than Tycho Brahe, or Erra Pater: \\

For he, by geometric scale, \\

Could take the size of pots of ale;\\

\settowidth{\versewidth}{Resolve byl}J

Resolve, by sines \\>[\versewidth] and tangents straight, \\

If bread or butter wanted weight; \\

And wisely tell what hour o’ the day \\

The clock does strike, by Algebra.

\end{verse}

\attrib{Samuel Butler (1612--1680)}

Mathematics

In mathematics he was greater
Than Tycho Brahe, or Erra Pater:
For he, by geometric scale,
Could take the size of pots of ale;
Resolve, by sines
and tangents straight,

275

14. POETRY

If bread or butter wanted weight;
And wisely tell what hour o’ the day
The clock does strike, by Algebra.
Samuel Butler (1612-1680)

Another limerick, but this time taking advantage of the patverse environment. If you
are typesetting a series of limericks a single \indentpattern will do for all of them.

\settowidth{\versewidth}{There was a young lady of Ryde}
\indentpattern{00110}
\needspace{7\onelineskip}
\PoemTitle{The Young Lady of Ryde}
\begin{verse}[\versewidth]
\begin{patverse}

There was a young lady of Ryde \\
Who ate some apples and died. \\
The apples fermented \\

Inside the lamented \\

And made cider inside her inside.
\end{patverse}

\end{verse}

Note that I used the \needspace command to ensure that the limerick will not get broken
across a page.

The Young Lady of Ryde

There was a young lady of Ryde
Who ate some apples and died.
The apples fermented
Inside the lamented
And made cider inside her inside.

The next example is a song you may have heard of. This uses \flagverse for labelling
the stanzas, and because the lines are numbered they can be referred to.

\settowidth{\versewidth}{In a cavern, in a canyon,}
\PoemTitle{Clementine}

\begin{versel} [\versewidthl]

\linenumberfrequency{2}

\begin{altverse}

\flagverse{1.} In a cavern, in a canyon, \\
Excavating for a mine, \\

Lived a miner, forty-niner, \label{vs:49} \\

And his daughter, Clementine. \\!

\end{altverse}

\begin{altverse}

276

14.3. Examples

\flagverse{\textsc{chorus}} Oh my darling, Oh my darling, \\
Oh my darling Clementine. \\

Thou art lost and gone forever, \\

Oh my darling Clementine.

\end{altverse}

\linenumberfrequency{0}

\end{verse}

The ‘forty-niner’ in line~\ref{vs:49} of the song

refers to the gold rush of 1849.

Clementine

1. In a cavern, in a canyon,
Excavating for a mine,
Lived a miner, forty-niner,
And his daughter, Clementine.

CHORUS Oh my darling, Oh my darling,
Oh my darling Clementine.

Thou art lost and gone forever,

Oh my darling Clementine.

The “forty-niner’ in line 3 of the song refers to the gold rush of 1849.
The last example is a much more ambitious use of \indentpattern. In this case it is
defined as:

\indentpattern{01355543221123468987797755456563222345544456688778899}

and the result is shown on the next page.

277

14. POETRY

Mouse’s Tale

Fury said to
a mouse, That
he met
in the
house,
‘Let us
both go
to law:
I will
prosecute
you. —
Come, I'll
take no
denial;
We must
have a
trial:
For
really
this
morning
I've
nothing
to do.
Said the
mouse to
the cur,
Such a
trial,
dear sir,
With no
jury or
judge,
would be
wasting
our breath.”
‘T'll be
judge,
I'll be
jury.”
Said
cunning
old Fury;
Tl try
the whole
cause
and
condemn
you

to
death.’

Lewis Carrol, Alice’s Adventures in Wonderland, 1865

278

Fifteen

Boxes, verbatims and files

The title of this chapter indicates that it deals with three disconnected topics, but there is
method in the seeming peculiarity. By the end of the chapter you will be able to write
LaTeX code that lets you put things in your document source at one place and have them
typeset at a different place, or places. For example, if you are writing a text book that
includes questions and answers then you could write a question and answer together yet
have the answer typeset at the end of the book.

Writing in one place and printing in another is based on outputting stuff to a file and
then inputting it for processing at another place or time. This is just how LaTeX produces
the ToC. It is often important when writing to a file that LaTeX does no processing of any
macros, which implies that we need to be able to write verbatim. One use of verbatim in
LaTeX is to typeset computer code or the like, and to clearly distinguish the code from the
main text it is often typeset within a box. Hence the chapter title.

The class extends the kinds of boxes normally provided, extends the default verbatims,
and provides a simple means of writing and reading files.

One problem with verbatims is that they can not be used as part of an argument to a
command. For example to typeset something in a framed minipage the obvious way is to
use the minipage as the argument to the \fbox macro:

\fbox{\begin{minipage}{6cm}
Contents of framed minipage
\end{minipage}}

This works perfectly well until the contents includes some verbatim material, whereupon
you will get nasty error messages. However this particular conundrum is solvable, even if
the solution is not particularly obvious. Here it is.

We can put things into a box, declared via \newsavebox, and typeset the contents of
the box later via \usebox. The most common way of putting things into a save box is
by the \sbox or \savebox macros, but as the material for saving is one of the arguments
to these macros this approach fails. But, 1rbox is an environment form of \sbox, so it
can handle verbatim material. The code below, after getting a new save box, defines a
new framedminipage environment which is used just like the standard minipage. The
framedminipage starts an 1rbox environment and then starts a minipage environment,
after which comes the contents. At the end it closes the two environments and calls \fbox
with its argument being the contents of the saved box which have already been typeset.

\newsavebox{\minibox}
\newenvironment{framedminipagel} [1]1{%
\begin{lrbox}{\minibox}\begin{minipage}{#13}}%

279

15. BOXES, VERBATIMS AND FILES

{\end{minipage}\end{lrbox}\fbox{\usebox{\minibox}}}

Question 1. Can you think of any improvements to the definition of the framedminipage
environment?

Question 2. An answer to question 1 is at the end of this chapter. Suggest how it was put
there.

15.1 BOXES

LaTeX provides some commands to put a box round some text. The class extends the
available kinds of boxes.

\begin{framed} text \end{framed}
\begin{shaded} text \end{shaded}
\begin{snugshadel} text \end{snugshade}

The framed, shaded, and snugshade environments, which were created by Donald Ar-
seneau as part of his framed package [?], put their contents into boxes that break across
pages. The framed environment delineates the box by drawing a rectangular frame. If
there is a pagebreak in the middle of the box, frames are drawn on both pages.

The shaded environment typesets the box with a shaded or colored background. This
requires the use of the color package [?], which is one of the required LaTeX packages, or
the xcolor package [?]. The shading color is shadecolor, which you have to define before
using the environment. For example, to have a light gray background:

\definecolor{shadecolor}{gray}{0.9}
For complete information on this see the documentation for the color or xcolor packages,

or one of the LaTeX books like the Graphics Companion [?]. In the snugshaded environment
the box clings more closely to its contents than it does in the shaded environment.

Recommended alternative

See the tcolorbox package by Thomas F. Sturm. An impressive system of boxes, decora-
tions and much much more. All based on TikZ, and highly configurable.

Be aware that the boxes we present in this manual are somewhat delicate; they do not
work in all circumstances. For example they will not work with the multicol package [?],
and any floats or footnotes in the boxes will disappear.

| \FrameRule \FrameSep \FrameHeightAdjust \

The framed environment puts the text into an ‘\fbox” with the settings:

\setlength{\FrameRule}{\fboxrule}
\setlength{\FrameSep}{3\fboxsep}

The macro \FrameHeightAdjust specifies the height of the top of the frame above the
baseline at the top of a page; its initial definition is:

\providecommand*{\FrameHeightAdjust}{0.6em}

280

15.1. Boxes

\MakeFramed{ (settings)} \endMakeFramed
\FrameCommand \FrameRestore

Internally, the environments are specified using the MakeFramed environment. The
(setting) should contain any adjustments to the text width (applied to \hsize and using
the \width of the frame itself) and a ‘restore’ command, which is normally the provided
\FrameRestore macro. The frame itself is drawn via the \FrameCommand, which can be
changed to obtain other boxing styles. The default definition equates to an \fbox and is:

\newcommand*{\FrameCommand}{%
\setlength{\fboxrule}{\FrameRule}\setlength{\fboxsep}{\FrameSepl}/,
\fbox}

For example, the framed, shaded and snugshade environments are defined as

\newenvironment{framed}{’ % uses default \FrameCommand
\MakeFramed{\advance\hsize -\width \FrameRestorel}1}/
{\endMakeFramed}

\newenvironment{shaded}{% % redefines \FrameCommand as \colorbox
\def \FrameCommand{\fboxsep=\FrameSep \colorbox{shadecolor}}/,
\MakeFramed{\FrameRestore}}%

{\endMakeFramed}

\newenvironment{snugshade}{’ A tight version of shaded
\def\FrameCommand{\colorbox{shadecolor}}/,
\MakeFramed{\FrameRestore\@setminipage}}/,
{\par\unskip\endMakeFramed}

If you wanted a narrow, centered, framed environment you could do something like
this:

\newenvironment{narrowframed}{%
\MakeFramed{\setlength{\hsize}{22pc}\FrameRestore}}%
{\endMakeFramed}

where 22pc will be the width of the new framed environment.
| \begin{leftbar} text \end{leftbar} \

The 1leftbar environment draws a thick vertical line at the left of the text. It is defined
as

\newenvironment{leftbar}{/
\def\FrameCommand{\vrule width 3pt \hspace{10pt}}%
\MakeFramed{\advance\hsize -\width \FrameRestorel}1}/
{\endMakeFramed}

By changing the (setting) for \MakeFramed and the definition of \FrameCommand you
can obtain a variety of framing styles. For instance, to have rounded corners to the frame
instead of the normal sharp ones, you can use the fancybox package [?] and the following
code:

\usepackage{fancybox}
\newenvironment{roundedframe}{%
\def \FrameCommand{}%

281

15. BOXES, VERBATIMS AND FILES

\cornersize*{20pt}%

\setlength{\fboxsep}{5pt}%

\ovalbox}¥%
\MakeFramed{\advance\hsize-\width \FrameRestore}}/,
{\endMakeFramed}

A framed environment is normally used to distinguish its contents from the surround-
ing text. A title for the environment may be useful, and if there was a pagebreak in the
middle, a title on the continuation could be desireable. Doing this takes a bit more work
than I have shown so far. This first part was inspired by a posting to CTT by Donald Arse-
neau..

\newcommand{\FrameTitle} [2]{%
\fboxrule=\FrameRule \fboxsep=\FrameSep
\fbox{\vbox{\nobreak \vskip -0.7\FrameSep
\rlap{\strut#1}\nobreak\nointerlineskip’ left justified
\vskip 0.7\FrameSep
\hbox{#2}}}}

\newenvironment{framewithtitle}[2] [\FrameFirst@Lab\ (cont.)]{%
\def\FrameFirst@Lab{\textbf{#2}}%
\def\FrameCont@Lab{\textbf{#1}}/

\def\FrameCommand##1{%
\FrameTitle{\FrameFirst@Lab}{##1}}/
\def\FirstFrameCommand##1{/,
\FrameTitle{\FrameFirst@Lab}{##1}}/
\def\MidFrameCommand##1{%
\FrameTitle{\FrameCont@Lab}{##1}}/
\def\LastFrameCommand##1{
\FrameTitle{\FrameCont@Lab}{##1}}
\MakeFramed{\advance\hsize-\width \FrameRestorel}}
{\endMakeFramed}

The framewithtitle environment, which is the end goal of this exercise, acts like the
framed environment except that it puts a left-justified title just after the top of the frame
box and before the regular contents.

\begin{framewithtitlel} [(cont-title)]1{(title)} text
\end{framewithtitle}

The (title) is set in a bold font. If the optional (cont-title) argument is given then (cont-title)
is used as the title on any suceeding pages, otherwise the phrase ‘(title) (cont.)’ is used for
the continuation title.

If you would like the titles centered, replace the line marked ‘left justified” in the code
for \FrameTitle with the line:

\rlap{\centerline{\strut#1}}\nobreak\nointerlineskip} centered

The code for the frametitle environment is not obvious. The difficulty in creating the
environment was that the underlying framing code goes through the ‘stuff’ to be framed

On 2003/10/24 in the thread framed.sty w/heading?. The particulars are no longer applicable as the framing code
in question then has since been revised.

282

15.1. Boxes

by first trying to fit it all onto one page (\FrameCommand). If it does not fit, then it takes
as much as will fit and typesets that using \FirstFrameCommand, then tries to typeset the
remainder on the next page. If it all fits then it uses \LastFrameCommand. If it doesn't fit,
it typesets as much as it can using \MidFrameCommand, and then tries to set the remainder
on the following page. The process repeats until all has been set.
If you would prefer to have the title at the top outside the frame the above code needs
adjusting.
\newcommand{\TitleFrame}[2]{%
\fboxrule=\FrameRule \fboxsep=\FrameSep
\vbox{\nobreak \vskip -0.7\FrameSep
\rlap{\strut#i}\nobreak\nointerlineskip’% left justified
\vskip 0.7\FrameSep
\noindent\fbox{#2}}}
\newenvironment{titledframe}[2] [\FrameFirst@Lab\ (cont.)]{)
\def \FrameFirst@Lab{\textbf{#2}}}
\def\FrameCont@Lab{\textbf{#1}}/,
\def \FrameCommand##1{
\TitleFrame{\FrameFirstQ@Lab}{##1}}
\def\FirstFrameCommand##1{%
\TitleFrame{\FrameFirstQLab}{##1}}
\def\MidFrameCommand##1{’
\TitleFrame{\FrameCont@Lab}{##1}}
\def\LastFrameCommand##1{%
\TitleFrame{\FrameCont@Lab}{##1}}
\MakeFramed{\hsize\textwidth
\advance\hsize -2\FrameRule
\advance\hsize -2\FrameSep
\FrameRestore}}%
{\endMakeFramed}

| \begin{titledframe} [(coni-title)]{(title)} text \end{titledframe} \

The titledframe environment is identical to framewithtitle except that the title is
placed just before the frame. Again, if you would like a centered title, replace the line
marked ‘left justified” in \Tit1leFrame by

\rlap{\centerline{\strut#1}}\nobreak\nointerlineskip} centered

You can adjust the code for the framewithtitle and titledframe environments to
suit your own purposes, especially as they are not part of the class so you would have to
type them in yourself anyway if you wanted to use them, using whatever names you felt
suitable.

The class provides two further environments in addition to those from the framed pack-
age.

\begin{qframe} text \end{qframe}
\begin{qgshade} text \end{gqshade}

When used within, say, a quotation environment, the framed and shaded environ-
ments do not closely box the indented text. The gframe and gshade environments do

283

15. BOXES, VERBATIMS AND FILES

provide close boxing.? The difference can be seen in the following quotation.

This is the start of a quotation environment. It forms the basis showing
the difference between the framed and qframe environments.

This is the second paragraph in the quotation environment and in turn
it is within the gframe environment.

This is the third paragraph in the quotation environment and in turn
it is within the framed environment.

This is the fourth and final paragraph within the quotation environment
and is not within either a qfame or framed environment.

If you want to put a frame inside an ad justwidth environment then you may well find
that gframe or gshade meet your expections better than framed of shaded. Of course, it
does depend on what your expectations are.

15.2 LONG COMMENTS

The % comment character can be used to comment out (part of) a line of TeX code, but this
gets tedious if you need to comment out long chunks of code.?

| \begin{comment} text to be skipped over \end{comment} \

As an extreme form of font changing, although it doesn’t actually work that way, anything
in a comment environment will not appear in the document; effectively, LaTeX throws it all
away. This can be useful to temporarily discard chunks of stuff instead of having to mark
each line with the % comment character.

Note. One thing to remember with the comment, is that your editing programme might not
regocnise the enclosed code as being “commented out” and you might end up being confused as to
where the boundaries of the commented code actually are.

As most editors has methods to outcomment blocks of code with %, it might be better to use just
that.

\newcomment{(name)}
\commentsoff{(name)}
\commentson{(name)}

The class lets you define your own comment environment via the \newcomment com-
mand which defines a comment environment called (name). In fact the class itself uses
\newcomment{comment} to define the comment environment. A comment environment
(name) may be switched off so that its contents are not ignored by using the \commentsoff
declaration. It may be switched on later by the \commentson declaration. In either case
(name) must have been previously declared as a comment environment via \newcomment.

Donald Arseneau has said that he may put something similar in a later version the framed package.
Though most modern IATEX editors has a feature to out comment a highlighted piece of code, and tools to un-
comment it again.

284

15.3. Verbatims

Suppose, for example, that you are preparing a draft document for review by some oth-
ers and you want to include some notes for the reviewers. Also, you want to include some
private comments in the source for yourself. You could use the comment environment
for your private comments and create another environment for the notes to the reviewers.
These notes should not appear in the final document. Your source might then look like:

\newcomment{review}
\ifdraftdoc\else

\commentsoff{review}
\fi

\begin{comment}
Remember to finagle the wingle!
\end{comment}

\begin{review}

\textit{REVIEWERS: Please pay particular attention to this section.}
\end{review}

Comment environments cannot be nested, nor can they overlap. The environments in
the code below will not work in the manner that might be expected:

\newcomment{acomment} \newcomment{mycomment}
\begin{comment}
\begin{acomment} %% comments cannot be nested

\end{acomment}
\begin{mycomment}
\end{comment}

\end{mycomment} %% comments cannot overlap

More encompassing comment environments are available if you use Victor Eijkhout’s
comment package [?].
Do note that due to most syntax highlighting not being aware of your comment-like envs

they are easy to miss in the code.

Tip. On a modern kernel, you can easily make a comment like env simple via
\NewDocumentEnvironment{FooBar}{+b}{}{}

The +b part tells the env to gobble up its entire contents into #1, which we then do not use.

15.3 VERBATIMS

Standard LaTeX defines the \verb and \verb* commands for typesetting short pieces of
text verbatim, short because they cannot include a linebreak. For longer verbatim texts

285

15. BOXES, VERBATIMS AND FILES

the verbatim or verbatim* environments can be used. The star forms indicate spaces in
the verbatim text by outputing a |, mark for each space. The class extends the standard
verbatims in various ways.

If you have to write a lot of \verb text, as I have had to do for this book, it gets te-
dious to keep on typing this sort of thing: \verb!verbatim text!. Remember that the
character immediately after the \verb, or \verb*, ends the verbatim processing.

\MakeShortVerb{(backslash-char)}
\MakeShortVerb*{(backslash-char)}
\DeleteShortVerb{ (backslash-char)}

The \MakeShortVerb macro takes a character preceded by a backslash as its argument,
say \ !, and makes that character equivalent to \verb!. Using the character a second time
will stop the verbatim processing. Doing, for example \MakeShortVerb{\!}, lets you
then use !verbatim text! instead of the longer winded \verb!verbatim text!. The
\MakeShortVerb* makes a version that uses \verbx* internally.

You have to pick as the short verb character one that you are unlikely to use; a good
choice is often the | bar character as this rarely used in normal text. This choice, though
may be unfortunate if you want to have any tabulars with vertical lines, as the bar character
is used to specify those. The \DeleteShortVerb macro is provided for this contingency;
give it the same argument as an earlier \MakeShortVerb and it will restore the short verb
character to its normal state.

The \MakeShortVerb, \MakeShortVerb and \DeleteShortVerb macros come from
the shortvrb package which is automatically loaded by the class.

| \setverbatimfont{(font-declaration)} |

The default font for verbatims is the normal sized monospaced font. The declaration
\setverbatimfont can be used to specify a different font. The class default is

\setverbatimfont{\normalfont\ttfamily}

To use a smaller version simply say
\setverbatimfont{\normalfont\ttfamily\small}

A monospaced font is normally chosen as verbatim text is often used to present pro-
gram code or typewritten text. If you want a more exotic font, try this

\setverbatimfont{\fontencoding{Ti}\fontfamily{cmss}\selectfont}

and your verbatim text will then look like

We are no longer using the boring old typewriter font

for verbatim text. We used the T1 encoding

to make sure that characters that are often ligatures

like *“, or ", or ---, or <, or >, print as expected.

After this we will switch back to the default verbatim font via
\setverbatimfont{\normalfont\ttfamily}

In the normal way of things with an OT1 fontencoding,* typesetting the ligatures men-
tioned above in the sans font produces: ligatures like “, or ", or —, or j, or j, which is not
what happens in the \verbatim environment.

No-one should use OT1 encoding anymore.

286

Added January
2024

15.3. Verbatims

\begin{verbatim} anything \end{verbatim}
\begin{verbatim*} anything \end{verbatim=}

In the verbatim environment® you can write anything you want (except
\end{verbatim}), and it will be typeset exactly as written. The verbatim#* environ-
ment is similar except, like with \verb*, spaces and tabs will be indicated with a
mark.

Changed. The following macros are no longer used. They will either issue a warning
or do nothing. Users are encouraged to remove them. \tabson [(number)], \tabsoff
(was the default), \wrappingon, \wrappingoff (was the default).

These macro enabled tabs marking (by displaying tabs as sseveral spaces) and
automatic line wrapping (at white space) for verbatim (it was never applied to
verbatim*). As part of a restructuring these features are no longer supported.

15.3.1 Boxed verbatims

Recommended alternative

Again the tcolorbox package also offers boxed verbatim, and can be combined with pack-
ages like listings or minted.

Verbatim environments are often used to present program code or, as in this book, LaTeX
code. For such applications it can be useful to put the code in a box, or to number the code
lines, or perhaps both.

| \begin{fboxverbatim} anything \end{fboxverbatim} \

The fboxverbatim environment typesets its contents verbatim and puts a tightly fitting
frame around the result; in a sense it is similar to the \fbox command.

\begin{boxedverbatim} anything \end{boxedverbatim}
\begin{boxedverbatim*} anything \end{boxedverbatim*}

The boxedverbatim and boxedverbatim* environments are like the verbatim and
verbatim* environments except that a box, allowing page breaks, may be put around
the verbatim text and the lines of text may be numbered. The particular format of the
output can be controlled as described below.

\bvbox \bvtopandtail \bvsides \nobvbox
\bvboxsep

Four styles of boxes are provided and you can extend these. Following the \bvbox decla-
ration, a box is drawn round the verbatim text, breaking at page boundaries if necessary;
this is the default style. Conversely, no boxes are drawn after the \nobvbox declaration.
With the \bvtopandtail declaration horizontal lines are drawn at the start and end of
the verbatim text, and with the \bvsides declarations, vertical lines are drawn at the left
and right of the text. The separation between the lines and the text is given by the length
\bvboxsep.
The following hooks are provided to set your own boxing style.

This version of the verbatim environment is heavily based on the verbatim package [?] but does provide some
extensions.

287

15. BOXES, VERBATIMS AND FILES

\bvtoprulehook \bvtopmidhook \bvendrulehook
\bvleftsidehook \bvrightsidehook

The macros \bvtoprulehook and \bvendrulehook are called at the start and end
of the boxedverbatim environment, and before and after page breaks. The macros
\bvleftsidehook and \bvrightsidehook are called at the start and end of each ver-
batim line. The macro \bvtopmidhook is called after \bvtoprulehook at the start of the
environment. It can be used to add some space if \bvtoprulehook is empty.

\bvperpagetrue \bvperpagefalse
\bvtopofpage{(text)} \bvendofpage{(text)}

The command \bvperpagetrue indicates that a box should be visibly broken at a page-
break, while there should be no visible break for \bvperpagefalse. If the box continues
on to another page then it may be advantageous to place some sort of heading before the
verbatim continues. Following the declaration \bvperpagetrue the (text) argument to
\bvtopofpage will be typeset after any pagebreak. For example you could set:

\bvtopofpage{continued}

to print ‘continued’ in the normal text font.
By default, the class sets

\bvendofpage{\hrule\kern-.4pt}

which causes the \hrule to be drawn at the end of a page as the visible break (the rule
is 0.4pt thick and the kern backs up that amount after the rule, so it effectively takes no
vertical space). This is not always suitable. For instance, if there will be a ‘continued’
message at the top of the following page it may seem odd to draw a line at the bottom of
the previous page. In this case, setting

\bvendofpage{}

will eliminate the rule.

As examples of the use of these hooks, here is how some of the boxed verbatim styles
are defined.

The default style is \bvbox, which puts separate full boxes on each page.

\newcommand{\bvbox}{%
\bvperpagetrue
\renewcommand{\bvtoprulehook}{\hrule \nobreak \vskip-.1ptl}/
\renewcommand{\bvleftsidehook}{\vrulel}y
\renewcommand{\bvrightsidehook}{\vrulel}y,
\renewcommand{\bvendrulehook}{\hrulel},
\renewcommand{\bvtopmidhook}{\rule{Opt}{2\fboxsep} \hssl}/

}

The \nobvbox turns off all boxing, and is defined as

\newcommand{\nobvbox}{%
\bvperpagefalse
\renewcommand{\bvtoprulehook}{}%
\renewcommand{\bvleftsidehook}{}%
\renewcommand{\bvrightsidehook}{}/
\renewcommand{\bvendrulehook}{}/

288

15.3. Verbatims

\renewcommand{\bvtopmidhook}{\rule{Opt}{2\fboxsep} \hssl}’
}

The definitions of the other styles, \bvtopandtail and \bvsides, are intermediate be-
tween \bvbox and \nobvbox in the obvious manner.

\linenumberfrequency{(nth)}
\resetbvlinenumber
\setbvlinenums{(first)}{(startat)}
\linenumberfont{(font declaration)}

The command \linenumberfrequency controls the numbering of lines in a
boxedverbatim — every (nth) line will be numbered. If (nth) is 0 or less, then no lines are
numbered, if (nth) is 1 then each line is numbered, and if (nth) is n, where n is 2 or more,
then only every nth line is numbered. Line numbering is continuous from one instance of
the boxedverbatim environment to the next. Outside the environment the line numbers
can be reset at any time by the command \resetbvlinenumber.

The \setbvlinenums macro can be used to specify that the number of the first line of
the following boxedverbatimshall be (first) and the first printed number shall be (startat).

The \linenumberfont declaration sets (font declaration) as the font for the line num-
bers. The default specification for this is:

\linenumberfont{\footnotesize\rmfamily}

Line numbers are always set at the left of the lines because there is no telling how long a
line might be and it might clash with a line number set at the right.

\bvnumbersinside
\bvnumbersoutside

Line numbers are typeset inside the box after the declaration \bvnumberinside and are
typeset outside the box after the declaration \bvnumbersoutside. The default is to print
the numbers inside the box.

Verbatim tabbing, but not wrapping, applies to the boxedverbatim environment.
15.3.2 New verbatims

The class implementation of verbatims lets you define your own kind of verbatim envi-
ronment. Unfortunately this is not quite as simple as saying

\newverbatim{myverbatim}{...}{...}
as you can for defining normal environments. Instead, the general scheme is

\newenvironment{myverbatim}/
{<non-verbatim stuff> \verbatim <more non-verbatim stuff>}Y,
{\endverbatim}

In particular, you cannot use either the \begin or \end macros inside the definition of the
new verbatim environment. For example, the following code will not work

\newenvironment{badverbatim}/
{NBG\begin{verbatim}}{\end{verbatim}}

and this won’t work either

289

15. BOXES, VERBATIMS AND FILES

\newenvironment{badverbatim}y,
{\begin{env}\verbatim}{\endverbatim\end{env}}

And, as with the standard verbatim environment, you cannot use the new one in the
definition of a new command.

For an example of something that does work, this next little piece of typesetting was
done in a new verbatim environment I have called verbexami, which starts and ends with
a horizontal rule, and it shows the definition of verbexami.

The verbexami environment

\newenvironment{verbexami}
{\par\noindent\hrule The verbexami environment \verbatim}}
{\endverbatim\hrule}

And this is a variation on the theme, with the environment again being enclosed by
horizontal rules.

Verbexamii

Is THIS FUN?
\newenvironment{verbexamiil}
{\vspace{0.5\baselineskip}\hrule \vspace{0.2\baselineskip}
Verbexamii \verbatim \textsc{Is this fun?}}%
{\endverbatim\hrule\vspace{0.3\baselineskip}}

As no doubt you agree, these are not memorable examples of the typesetter’s art but
do indicate that you can define your own verbatim environments and may need to take a
bit of care to get something that passes muster.

I will give some more useful examples, but mainly based on environments for writing
verbatim files as I think that these provide a broader scope.

15.3.3 Example: the 1code environment

In this manual all the example LaTeX code has been typeset in the 1code environment; this
is a verbatim environment defined especially for the purpose. Below I describe the code
for defining my lcode environment, but first here is a simple definition of a verbatim
environment, which I will call smallverbatim, that uses the \small font instead of the
normalsize font.

\newenvironment{smallverbatim}},
{\setverbatimfont{\normalfont\ttfamily\small}},
\verbatim},
{\endverbatim}

The verbatim environment is implemented as a kind of trivlist, and lists usually
have extra vertical space before and after them. For my environment I did not want any
extra spacing so I defined the macro \@zeroseps to zero the relevant list spacings. I also
wanted the code lines to be inset a little, so I defined a new length called \gparindent to
use as the indentation.

290

15.4. Files

\makeatletter
\newcommand{\@zeroseps}{\setlength{\topsep}{\z@}/
\setlength{\partopsep}{\z@}%
\setlength{\parskip}{\z@}}
\newlength{\gparindent} \setlength{\gparindent}{\parindent}
\setlength{\gparindent}{0.5\parindent}
% Now, the environment itself
\newenvironment{lcode}{\@zeroseps
\renewcommand{\verbatim@startline}{%
\verbatim@line{\hskip\gparindentl}}
\small\setlength{\baselineskip}{\onelineskip}\verbatim}y,
{\endverbatim
\vspace{-\baselineskip}%
\noindent
}

\makeatother

Unless you are intimately familiar with the inner workings of the verbatim processing
you deserve an explanation of the 1code definition.
Extremely roughly, the code for \verbatim looks like this:
\def\verbatim{}

\verbatim@font

% for each line, until \end{verbatim}
\verbatim@startline
% collect the characters in \verbatim@line
\verbatim@processline{\the\verbatim@line\par}
% repeat for the next line

}

The code first calls \verbatim@font to set the font to be used. Then, for each line it does
the following:

* Calls the macro \verbatim@startline to start off the output version of the line.

e Collects all the characters comprising the line as a single token called
\verbatim@line.

e If the characters are the string “\end{verbatim}’ it finishes the verbatim environ-
ment.

* Otherwise it calls the macro \verbatim@processline whose argument is the char-
acters in the line, treated as a paragraph. It then starts all over again with the next
line.

I configured the \verbatim@startline macro to indent the line of text using a hori-

zontal skip of \gparindent. The rest of the initialisation code, before calling \verbatim
to do the real processing, just sets up the vertical spacing.

15.4 FILES

LaTeX reads and writes various files as it processes a document. Obviously it reads the
document source file, or files, and it writes the log file recording what it has done. It also
reads and writes the aux file, and may read and write other files like a toc file.

291

15. BOXES, VERBATIMS AND FILES

On occasions it can be useful to get LaTeX to read and/or write other files of your own
choosing. Unfortunately standard LaTeX does not provide any easy method for doing this.
The memoir class tries to rectify this.

| \jobname \

When you run LaTeX on your source file, say fred. tex, LaTeX stores the name of this file
(fred) in the macro \ jobname. LaTeX uses this to name the various files that it writes out
— the dvi or pdf file, the 1og file, the aux file, etc.

TeX can read from 16 input streams and can write to 16 output streams. Normally an
input stream is allocated for each kind of file that will be read and an output stream for
each kind of file that will be written. On the input side, then, at least two streams are
allocated, one for the source tex file and one for the aux file. On the output side again at
least two streams are allocated, one for the 1og file and one for the aux file. When toc and
other similar files are also part of the LaTeX process you can see that many of the 16 input
and output streams may be allocated before you can get to use one yourself.

\newoutputstream{(stream)}
\newinputstream{(stream)}

The macros \newoutputstreamand \newinputstream respectively create a new output
and input stream called (stream), where (stream) should be a string of alphabetic characters,
like myout or myin. The (stream) names must be unique, you cannot use the same name
for two streams even if one is a input stream and the other is an output stream. If all the
16 streams of the given type have already been allocated TeX will issue a message telling
you about this, of the form:

No room for a new write % for an output stream
No room for a new read % for an input stream

The two \new...stream commands also provide two empty macros called
\atstreamopen<stream> and \atstreamclose<stream>. If these macros already exist
then they are left undisturbed. For example if you do:

\newcommand{\atstreamopenmyout}{...}
\newoutputstream{myout}
\newinputstream{myin}

Then you will find that three new commands have been created like:

\newcommand{\atstreamclosemyout}{}
\newcommand{\atstreamopenmyin}{}
\newcommand{\atstreamclosemyin}{}

You can use \renewcommand to change the definitions of these if you wish.
| \IfStreamOpen{(stream)}{(true-code) }{ {false-code)} \

The macro \IfStreamOpen checks whether or not the (stream) stream is open. If it is then
the (true-code) argument is processed, while when it is not open the (false-code) argument
is processed.

15.4.1 Writing to a file

One stream may be used for writing to several different files, although not simultaneously.

292

15.4. Files

\openoutputfile{(filename)}{(stream)}
\closeoutputstreamd{ (stream)}

The command \openoutputfile opens the file called (filename), either creating it if it
does not exist, or emptying it if it already exists. It then attaches the file to the output
stream called (stream) so that it can be written to, and then finally calls the macro named
\atstreamopen<stream>.

The command \closeoutputstream firstly calls the macro named
\atstreamclose<stream> then closes the output stream (stream), and finally detaches
and closes the associated file.

| \addtostream{(stream)}{{text)} ‘

The \addtostream command writes (text) to the output stream (stream), and hence to
whatever file is currently attached to the stream. The (stream) must be open. Any com-
mands within the (text) argument will be processed before being written. To prevent com-
mand expansion, precede the command in question with \protect.

Writing verbatim text to a file is treated specially as it is likely to be the most common
usage.

\begin{verbatimoutputl}{(file)} anything \end{verbatimoutput}
\begin{writeverbatim}{(stream)} anything \end{writeverbatim}

The text within a verbatimoutput environment is written verbatim to the (file) file. Al-
ternatively, the contents of the writeverbatim environment are written verbatim to the
(stream) stream.

Specifically, verbatimoutput opens the specified file, writes to it, and then closes the
file. This means that if verbatimoutput is used more than once to write to a given file,
then only the contents of the last of these outputs is captured in the file. On the other hand,
you can use writeverbatim several times to write to the file attached to the stream and,
providing the stream has not been closed in the meantime, all will be captured.

15.4.2 Reading from a file

One stream may be used for reading from several files, although not simultaneously.

\openinputfile{(filename)}{(stream)>}
\closeinputstream{(stream)}

The command \openinputfile opens the file called (filename) and attaches it to the in-
put stream called (stream) so that it can be read from. Finally it calls the macro named
\atstreamopen<stream>. It is an error if (filename) can not be found.

The command \closeinputstream calls the macro named \atstreamclose<stream>,
closes the output stream (stream), and then detaches and closes the associated file.

| \readstream{(stream)} |

The command \readstream reads the entire contents of the file currently associated with
the input stream (stream). This provides the same functionality as \input{(filename)}.

| \readaline{(stream)} |

The \readaline reads what TeX considers to be one line from the file that is currently
associated with the input stream (stream).

293

15. BOXES, VERBATIMS AND FILES

Multiple lines can be read by calling \readaline multiple times. A warning is issued
if there are no more lines to be read (i.e., the end of the file has been reached).
Just as for writing, reading files verbatim is treated specially.

\verbatiminput{(file)} \verbatiminput*{(file)}
\boxedverbatiminput{(file)}} \boxedverbatiminput*{(file)}
\readverbatim{(stream)} \readverbatim{(stream)}
\readboxedverbatim{(stream)} \readboxedverbatimx{(stream)}

The commands \verbatiminput and \boxedverbatiminput, and their starred ver-
sions, act like the verbatim and boxedverbatim environments, except that they get their
text from the (file) file. It is an error if (file) cannot be found. Similarly, \readverbatim
and \readboxedverbatim get their text from the file currently attached to the (stream)
input stream. It is an error if (stream) is not open for input.

15.4.3 Example: endnotes

In an earier version of the manual, this section contained an example as to how one could make
endnotes. The example is now irrelevant, since memoir contain something similar to end notes
called page notes, see §12.6 on page 251.

Those interested in the code from the old example, can find it in the manual source (it has just
been commented out).

15.4.4 Example: end floats

There are some documents where all figures are required to be grouped in one place, for
instance at the end of the document or perhaps at the end of each chapter. Grouping at the
end of a document with chapters is harder, so we'll tackle that one.

The basic idea is to write out verbatim each figure environment and then read them all
back in at the end. We will use a stream, let’s call it tryout, and call our file for figures
tryout.fig.

\newoutputstream{tryout}
\openoutputfile{tryout.fig}{tryout}

If all were simple, in the document we could then just do

\begin{writeverbatim}{tryout}
\begin{figure} ... \end{figure}
\end{writeverbatim}

\closeoutputstream{tryout}
\input{tryout.fig}

So, what'’s the problem?

By default figure captions are numbered per chapter, and are preceeded by the chapter
number; more precisely, the definition of a figure number is

\thechapter.\arabic{figure}

If we simply lump all the figures at the end, then they will all be numbered as if they were
in the final chapter. For the sake of argument assume that the last chapter is number 10.
The nth figure will then be numbered 10.n. One thing that we can do rather simply is to
change the definition of the figure by using another counter, let’s call it pseudo, instead of
the chapter.

294

15.4. Files

\newcounter{pseudo}
\renewcommand{\thepseudo}{\arabic{pseudo}}
\renewcommand{\thefigure}{\thepseudo.\arabic{figurel}}

Now, all we should have to do is arrange that the proper value of pseudo is available
before each figure is typeset at the end. The code around the figure environments might
then look like this

\addtostream{tryout}{\protect\setcounter{pseudo}{\thechapter}}
\begin{writeverbatim}{tryout}
\begin{figure}...

and a part of the file might then look like

\setcounter{pseudo}{4}
\begin{figure}...

The \protect before the \setcounter command will stop it from expanding before it is
written to the file, while the \thechapter command will be expanded to give the actual
number of the current chapter. This looks better as now at least the figure will be numbered
4.n instead of 10.n.

There is one last snag — figure numbers are reset at the start of each chapter — but
if we just dump the figures at the end of the document then although the chapter part of
the number will alter appropriately because of the pseudo process, the second part of the
number will just increase continuously. It looks as though we should write out a change
to the chapter counter at the start of each chapter. If we do that, then we should be able
to get rid of the pseudo counter, which sounds good. But, and this is almost the last but,
what if there are chapters after we have read in the figure file? To cater for this the chapter
number of the last chapter before the file must be saved, and then restored after the figures
have been processed.

Finally, wouldn’t it be much better for the user if everything was wrapped up in an
environment that handled all the messy stuff?

Here is the final code that I am going to produce which, by the way, is displayed in the
boxedverbatim environment with line numbers and the following settings, just in case
there is a page break in the middle of the box.

\nobvbox
\bvperpagetrue
\bvtopofpage{\begin{center}\normalfont

(Continued from previous page)\end{center}}
\bvendofpage{}
\resetbvlinenumber
\linenumberfrequency{1}
\bvnumbersoutside
\linenumberfont{\footnotesize\rmfamily}
\begin{boxedverbatim}

295

15. BOXES, VERBATIMS AND FILES

\newoutputstream{tryout}
\openoutputfile{\jobname.fig}{tryout}
\newcounter{pseudo}
\renewcommand{\thefigure}{\thepseudo.\arabic{figure}}
\newenvironment{writefigure}{’
\ifnum\value{chapter}=\value{pseudo}\else
\setcounter{pseudo}{\value{chapter}}
\addtostream{tryout}{\protect\stepcounter{chapter}}
\addtostream{tryout}{\protect\addtocounter{chapter}{-1}}
\addtostream{tryout}{¥%
\protect\setcounter{pseudo}{\thechapter}}
\fi
\addtostream{tryout}{\protect\begin{figurel}}
\writeverbatim{tryout}}’
{\endwriteverbatim\finishwritefigure}
\newcommand{\finishwritefigure}{J,
\addtostream{tryout}{\protect\end{figure}}}
\newcommand{\printfigures}{’
\closeoutputstream{tryoutl}’
\input{\jobname.fig}%

The above code should be either put in the preamble or in a separate package file.

The first four lines of the code perform the initial setup described earlier. Lines 1 and 2
set up for outputting to a file \ jobname . fig, which is where the figures will be collected.
Lines 3 and 4 create the new counter we need and change the construction of the figure
number. The rest of the code defines a new environment writefigure which is to be used
instead of the figure environment. It writes its content out to the tryout stream.

In line 6 a check is made to see if the current values of the chapter and pseudo coun-
ters are the same; nothing is done if they are. If they are different, it means that this is
the first figure in the chapter and we have to put appropriate information into the figure
file. Line 7 sets the pseudo counter to the value of the chapter counter (if there is another
writefigure in the chapter it will then skip over the code in lines 7 to 11). The next lines
put (where N is the number of the current chapter):

\stepcounter{chapter}
\addtocounter{chapter}{-1}
\setcounter{pseudo}{N}

into the figure file. Stepping the chapter number (by one) resets the following figure num-

ber, and then subtracting one from the stepped number returns the chapter number to its

original value. Finally the counter pseudo is set to the number of the current chapter.
Line 13 puts

\begin{figure}

into the figure file, and line 14 starts the writeverbatim environment.

296

15.4. Files

For the end of the writefigure environment (line 15), the writeverbatim environ-
ment is ended and after that the \finishwritefigure macro is called. This is defined in
lines 16 and 17, and simply writes

\end{figure}

out to the figure file. The \endwriteverbatim, and any other kind of \end. . . verbatim,
command is very sensitive to anything that follows it, and in this case did not like to be
immediately followed by an \addtostream{. . .}, but did not mind it being wrapped up
in the \finishwritefigure macro.

The \printfigures macro defined in the last three lines of the code simply closes the
output stream and then inputs the figures file.

As an example of how this works, if we have the following source code:

\chapter{The fifth chapter}

\begin{writefigure}
%% illustration and caption
\end{writefigure}

\begin{writefigure}
%% another illustration and caption
\end{writefigure}

then the figure file will contain the following (shown verbatim in the fboxverbatim en-
vironment).

\stepcounter{chapter}
\addtocounter{chapter}{-1}
\setcounter{pseudo}{5}
\begin{figure}

%% illustration and caption
\end{figure}

\begin{figure}

%% another illustration and caption
\end{figure}

15.4.5 Example: questions and answers

Text books often have questions at the end of a chapter. Sometimes answers are also pro-
vided at the end of the book, or in a separate teachers guide. During the draft stages of
such a book it is useful to keep the questions and answers together in the source and paper
drafts, only removing or repositioning the answers towards the end of the writing process.

This example provides an outline for meeting these desires. For pedagogical purposes
I use a \1label and \ref technique although there are better methods. The example also
shows that not everything works as expected — it is a reasonably accurate rendition of the
process that I actually went through in designing it.

First we need a counter for the questions and we’ll use an environment for questions
as these may be of any complexity. The environment takes one argument — a unique key
to be used in a \1abel.

\newcounter{question} \setcounter{question}{0}

297

15. BOXES, VERBATIMS AND FILES

\renewcommand{\thequestion}{\arabic{question}}
\newenvironment{question}[1]%
{\refstepcounter{question}
\par\noindent\textbf{Question \thequestion:}\label{#1}}J
{\par}

I have used \refstepcounter to increment the counter so that the \label will refer to
it, and not some external counter.

We will use a file, called \ jobname . ans to collect the answers and this will be written
to by a stream. There is also a convenience macro, \printanswers, for the user to call to
print the answers.

\newoutputstream{ansout}

A matching environment for answers is required. The argument to the environment is
the key of the question.

In draft mode it is simple, just typeset the answer and no need to bother with any file
printing (remember that \ifdraftdoc is true for a draft mode document).

\ifdraftdoc % when in draft mode
\newenvironment{answer}[1]%
{\par\noindent\textbf{Answer \ref{#1}:}1}/
{\par}
\newcommand{\printanswers}{}
\else % when not in draft mode

In final mode the answer environment must write its contents verbatim to the ans file
for printing by \printanswers. Dealing with these in reverse order, this is the definition
of \printanswer when not in draft mode.

\newcommand{\printanswers}{/%
\closeoutputstream{ansout}
\input{\jobname.ans}}

Now for the tricky bit, the answer environment. First define an environment that
makes sure our output stream is open, and which then writes the answer title to the stream.

\newenvironment{@nswer}[1] {\@bsphack
\IfStreamOpen{ansout}{}{%
\openoutputfile{\jobname.ans}{ansoutl}’
A
\addtostream{ansout}{\par\noindent\textbf{Answer \ref{#1}:}}/
}{\@esphack}

The macros \@bsphack and \@esphack are LaTeX kernel macros that will gobble extrane-
ous spaces around the environment. In other words, this environment will take no space
in the typeset result. The \IfStreamOpen macro is used to test whether or not the stream
is open, and if it isn’t then it opens it. The answer title is then written out to the stream.
Now we can define the answer environment so that its contents get written out verbatim.

\newenvironment{answer} [1]%

298

15.4. Files

{\@bsphack\@nswer{#1}\writeverbatim{ansoutl}}/
{\par\endwriteverbatim\end@nswer\@esphack}
\fi % end of \ifdraftdoc ...\else ...

When I was testing this code I had a surprise as I got nasty error messages from LaTeX
the first time around, but it worked fine when I processed the source a second time! The
problem lies in the code line

\addtostream{ansout}{\par\noindent\textbf{Answer \ref{#1}:}3}}

The first time around, LaTeX processed the \ref command and of course it was un-
defined. In this case \ref gets replaced by the code to print the error message, which
involves macros that have @ in their names, which LaTeX only understands under special
circumstances. The second time around \ref gets replaced by the question number and
all is well. I then remembered that some commands need protecting when they are written
out, so I tried (I've wrapped the line to fit)

\addtostream{ansout}{\par\noindent
\protect\makeatletter\textbf{Answer
\protect\ref{#1}:}\protect\makeatotherl}y,

which did work but seemed very clumsy.
I then took another line of attack, and looked at the definition of \ref to see if I could
come up with something that didn’t expand into @ names. The result of this was

\addtostream{ansout}{\par\noindent\textbf{Answer
\quietref{#1}:}}%

In the kernel file 1txref . dtx I found the definition of \ref and it used a macro \@setref
(shown below) to do its work. My \quietref locally changes the definition of \@setref
and then calls \ref, which will then use the modified \@setref.

\def\@setref#1#2#3{/, %% kernel definition
\ifx#1\relax
\protect\G@refundefinedtrue
\nfss@text{\reset@font\bfseries 77}}
\@latex@warning{Reference ‘#3’ on page \thepage \space

undefined}’
\else
\expandafter#2#1\null
\fi}

\DeclareRobustCommand{\quietref}[1]{\begingroup
\def\@setref##1##2##3{/,
\ifx##1\relax ?7?\else
\expandafter##2##1\null
\fi
\ref{#1}\endgroup}

Having gone all round the houses, the simplest solution was actually one that I had
skipped over

\addtostream{ansout}{\par\noindent\textbf{Answer

299

15. BOXES, VERBATIMS AND FILES

\protect\ref{#1}:}}%

The advantage of using the \label and \ref mechanism is that a question and its
answer need not be adjacent in the source; I think that you have seen some of the disad-
vantages. Another disadvantage is that it is difficult to use, although not impossible, if you
want the answers in a separate document.

The real answer to all the problems is force an answer to come immediately after the
question in the source and to use the question counter directly, as in the endnotes exam-
ple. In the traditional manner, this is left as an exercise for the reader.

15.5 ANSWERS

Question 1. As a convenience, the argument to the environment could be made optional,
defaulting, say, to the current line width. If the default width is used the frame will be
wider than the line width, so we really ought to make the width argument specify the
width of the frame instead of the minipage. This means calculating a reduced width for
the minipage based on the values of \fboxsep and \fboxrule.

\newsavebox{\minibox}

\newlength{\minilength}

\newenvironment{framedminipage} [1] [\1inewidth]{/
\setlength{\minilength}{#1}
\addtolength{\minilength}{-2\fboxsep}
\addtolength{\minilength}{-2\fboxrule}
\begin{lrbox}{\minibox}\begin{minipage}{\minilength}}/
{\end{minipage}\end{lrbox}\fbox{\usebox{\minibox}1}}

Question 2. There are at least three reasonable answers. In increasing or decreasing order
of probability (your choice) they are:

* I took Sherlock Holmes’ advice and followed the methods outlined in the chapter;
* [used a package, such as the answer package which is designed for the purpose;

¢ [just wrote the answers here.

300

1

Sixteen

Cross referencing

A significant aspect of LaTeX is that it provides a variety of cross referencing methods,
many of which are automatic. An example of an automatic cross reference is the way in
which a \chapter command automatically adds its title and page number to the ToC, or
where a \caption adds itself to a ‘List of...".

Some cross references have to be specifically specified, such as a reference in the text to
a particular chapter number, and for these LaTeX provides a general mechanism that does
not require you to remember the particular number and more usefully does not require
you to remember to change the reference if the chapter number is later changed.

16.1 LABELS AND REFERENCES

The general LaTeX cross reference method uses a pair of ma